if (a^2-b^2)sintheta +2ab costheta =a^2+b^2, then prove that tantheta =a^2-b^2/2ab
Answers
Answered by
2
(a2−b2)sinθ+2abcosθ=a2+b2
⇒a2−b2a2+b2sinθ+2aba2+b2cosθ=1.....(1)
Now if a2−b2a2+b2=cosα
then
sinα=√1−cos2α
=√1−(a2−b2a2+b2)2
=2aba2+b2
So the relation (1) becomes
cosαsinθ+sinαcosθ=1
⇒sin(θ+α)=sin(π2)
⇒α=π2−θ
⇒cosα=cos(π2−θ)
⇒cosα=sinθ
∴sinθ=cosα=a2−b2a2+b2
Alternative-1
Given
(a2−b2)sinθ+2abcosθ=a2+b2
Transferring to RHS we get
a2(1−sinθ)+b2(1+sinθ)−2abcosθ=0
⇒(a√1−sinθ)2+(b√1+sinθ)2−2ab√1−sin2θ=0
⇒[(a√1−sinθ)−(b√1+sinθ)]2=0
⇒a√1−sinθ=b√1+sinθ
⇒a2(1−sinθ)=b2(1+sinθ)
⇒sinθ=a2−b2
⇒a2−b2a2+b2sinθ+2aba2+b2cosθ=1.....(1)
Now if a2−b2a2+b2=cosα
then
sinα=√1−cos2α
=√1−(a2−b2a2+b2)2
=2aba2+b2
So the relation (1) becomes
cosαsinθ+sinαcosθ=1
⇒sin(θ+α)=sin(π2)
⇒α=π2−θ
⇒cosα=cos(π2−θ)
⇒cosα=sinθ
∴sinθ=cosα=a2−b2a2+b2
Alternative-1
Given
(a2−b2)sinθ+2abcosθ=a2+b2
Transferring to RHS we get
a2(1−sinθ)+b2(1+sinθ)−2abcosθ=0
⇒(a√1−sinθ)2+(b√1+sinθ)2−2ab√1−sin2θ=0
⇒[(a√1−sinθ)−(b√1+sinθ)]2=0
⇒a√1−sinθ=b√1+sinθ
⇒a2(1−sinθ)=b2(1+sinθ)
⇒sinθ=a2−b2
Similar questions