Math, asked by ritasingh2502, 8 months ago

If a = 2^m and b=2^m+1 show that 8a^3/b^2=2^m+1show that​

Answers

Answered by mishbahul2005
2

Answer:

please make me as brainliest.

Attachments:
Answered by TheValkyrie
9

Answer:

Step-by-step explanation:

\Large{\underline{\underline{\bf{Given:}}}}

  • a=2^{m}
  • b=2^{m+1}

\Large{\underline{\underline{\bf{To\:Prove:}}}}

\dfrac{8a^{3} }{b^{2} } =2^{m+1}

\Large{\underline{\underline{\bf{Solution:}}}}

→ Given that a=2^{m}

→ Hence,

  a^{3} =({2^{m}}) ^{3}

 a^{3} =2^{3m}---(1)

→ Also given,

  b=2^{m+1}

→ Hence,

  b^{2} =({2^{m+1} })^{2}

 b^{2}=2^{2m+2}----(2)

→ Given LHS is,

   \dfrac{8a^{3} }{b^{2} }

→ Substitute equation 1 and 2 in the LHS

  \dfrac{8a^{3} }{b^{2} } =\dfrac{8\times (2)^{3m} }{(2)^{2m+2} }

→ We know that 8 = 2³. Substituting in the equation,

 \dfrac{8a^{3} }{b^{2} } =\dfrac{2^{3} \times (2)^{3m} }{(2)^{2m+2} }

 \dfrac{8a^{3} }{b^{2} } =\dfrac{(2)^{3+3m}  }{(2)^{2m+2} }

\dfrac{8a^{3} }{b^{2} } =(2)^{3+3m-(2m+2)}

 \dfrac{8a^{3} }{b^{2} } =(2)^{3+3m-2m-2}

 \dfrac{8a^{3} }{b^{2} } =(2)^{m+1}

= RHS

→ Hence proved.

\Large{\underline{\underline{\bf{Exponetial\:laws\:used:}}}}

a^{m}\times a^{n}= a^{m+n}

\dfrac{a^{m} }{a^{n} } =(a)^{m-n}

(a^{m})^{n}   = a^{mn}

Similar questions