If a =2 +root 3 find a square minus one upon a square
Answers
Answered by
1
Answer :
a² - 1/a² = 8√3
Solution :
- Given : a = 2 + √3
- To find : a² - 1/a² = ?
We have ;
a = 2 + √3
Thus ,
1/a = 1/(2 + √3)
Now ,
Rationalising the denominator of the term in RHS , we get ;
=> 1/a = (2 - √3) / (2 + √3)(2 - √3)
=> 1/a = (2 - √3) / [ 2² - (√3)² ]
=> 1/a = (2 - √3) / (4 - 3)
=> 1/a = (2 - √3) / 1
=> 1/a = 2 - √3
Now ,
=> a + 1/a = (2 + √3) + (2 - √3)
=> a + 1/a = 4
Also ,
=> a - 1/a = (2 + √3) - (2 - √3)
=> a - 1/a = 2 + √3 - 2 + √3
=> a - 1/a = 2√3
Also ,
We know that , A² - B² = (A + B)•(A - B)
Thus ,
A = a and B = 1/a , thus
=> a² - 1/a² = (a + 1/a)•(a - 1/a)
=> a² - 1/a² = 4•2√3
=> a² - 1/a² = 8√3
Hence ,
a² - 1/a² = 8√3
Answered by
9
If a =2 +root 3 find a square minus one upon a square
- a = 2 + √3
- a² -1/a²
a = 2 + √3
- 1/a = 1/2 + √3
Rationalising the denominator of the term in RHS we get -
- 1/a = (2-√3) / (2+√3) (2-√3)
- 1/a = (2-√3) / [2² - (√3)² ]
- 1/a = (2-√3) / 4 - 3
- 1/a = (2-√3) / 1
- 1/a = (2-√3)
- a + 1/a = (2+ √3) + (2- √3)
- a + 1/a = 4
- a - 1/a = (2+ √3) - (2- √3)
- a - 1/a = (2+ √3) - (2 + √3)
- a - 1/a = 2√3
- A² - B² = A + B • A - B
- a² - 1/a² = a+1/a² • a-1/a²
- a² - 1/a² = 4•2√3
- a² - 1/a² = 8√3
a² - 1/a² = 8√3
@Itzbeautyqueen23
Hope it's helpful
Thank you :)
Similar questions