Math, asked by ananya15438, 13 days ago

If a = 2 + root 5 / 2 - root 5 and b = 2 - root 5 / 2 + root 5 , then find the value of a^2 - b^2​

Answers

Answered by kinzal
33

Answer :

  • - 144\sqrt{5}

Solution :

_________________

In  \sf a = \frac{2 + \sqrt{5}}{2 - \sqrt{5}} \\

  •  \sf a = \frac{2 + \sqrt{5}}{2 - \sqrt{5}} \\

  •  \sf a = \frac{2 + \sqrt{5}}{2 - \sqrt{5}} × \frac{2 + \sqrt{5}}{2 + \sqrt{5}} \\

  •  \sf a = \frac{(2 + \sqrt{5})²}{(2)² - (\sqrt{5})²} \\

  •  \sf a = \frac{4 + 4\sqrt{5} + 5 }{4 - 5} \\

  •  \sf b = \frac{4 + 4\sqrt{5}  }{- 1 } \\

  •  \sf a = - 9 + 4\sqrt{5} \\

__________

In  \sf b = \frac{2 - \sqrt{5}}{2 + \sqrt{5}} \\

  •  \sf b = \frac{2 - \sqrt{5}}{2 + \sqrt{5}} \\

  •  \sf b = \frac{2 - \sqrt{5}}{2 + \sqrt{5}} × \frac{2 - \sqrt{5}}{2 - \sqrt{5}} \\

  •  \sf b = \frac{(2 - \sqrt{5})²}{(2)² - ( \sqrt{5})²} \\

  •  \sf b = \frac{4 - 4\sqrt{5} + 5 }{4 - 5 } \\

  •  \sf b = \frac{9 - 4\sqrt{5} }{- 1 } \\

  •  \sf b = - 9 - 4\sqrt{5} \\

_________________

Now, As Question,

 \longrightarrow \sf a² - b² = ( - 9 + 4\sqrt{5} )² - ( - 9 - 4\sqrt{5} )² \\

 \longrightarrow \sf  = ( - 9)² + 2( - 9)(4\sqrt{5}) + ( - 9)² - \bigg((-9)² + 72\sqrt{5} + 81 \bigg) \\

 \longrightarrow \sf = 81 - 72\sqrt{5} + 81 - (81 + 72\sqrt{5} + 81 ) \\

 \longrightarrow \sf = 81 - 75\sqrt{5} + 81 - 81 - 72\sqrt{5} - 81  \\

 \longrightarrow \sf = \cancel{ 81 } - 75\sqrt{5}  \cancel{+ 81}  \cancel{- 81 } - 72\sqrt{5} \cancel{- 81} \\

 \longrightarrow \sf = \boxed{ - 144 \sqrt{5} } \\

_________________

I hope it helps you ❤️✔️

Similar questions