Math, asked by wilmakannankeril, 2 months ago

if a = 2-root3 find [a-1/a]³





please answer​

Answers

Answered by anindyaadhikari13
3

Solution:

Given,

 \tt \longrightarrow a = 2 -  \sqrt{3}

Therefore,

 \tt \longrightarrow  \dfrac{1}{a}  =  \dfrac{1}{2 -  \sqrt{3}}

 \tt \longrightarrow  \dfrac{1}{a} =  \dfrac{1}{2 -  \sqrt{3}} \times  \dfrac{2 +  \sqrt{3} }{2 +  \sqrt{3} }

 \tt \longrightarrow  \dfrac{1}{a} =  \dfrac{2 +  \sqrt{3} }{ {2}^{2}  - ( \sqrt{3})^{2} }

 \tt \longrightarrow  \dfrac{1}{a} =  \dfrac{2 +  \sqrt{3} }{4 - 3}

 \tt \longrightarrow  \dfrac{1}{a} = 2 +  \sqrt{3}

Therefore,

 \tt \longrightarrow a -  \dfrac{1}{a}  = 2 -  \sqrt{3}  - (2 +  \sqrt{3})

 \tt \longrightarrow a -  \dfrac{1}{a}  = 2 -  \sqrt{3}  - 2  -   \sqrt{3}

 \tt \longrightarrow a -  \dfrac{1}{a}  = -  2\sqrt{3}

Cubing both sides, we get,

 \tt \longrightarrow  \bigg(a -  \dfrac{1}{a} \bigg)^{3}   =( -  2\sqrt{3})^{3}

 \tt \longrightarrow  \bigg(a -  \dfrac{1}{a} \bigg)^{3} =  - 24 \sqrt{3}

Which is our required answer.

Answer:

  • (a - 1/a)³ = -24√3.

Learn More:

  • (a + b)² = a² + 2ab + b²
  • (a - b)² = a² - 2ab + b²
  • a² - b² = (a + b)(a - b)
  • (a + b)³ = a³ + 3ab(a + b) + b³
  • (a - b)³ = a³ - 3ab(a - b) - b³
  • a³ + b³ = (a + b)(a² - ab + b²)
  • a³ - b³ = (a - b)(a² + ab + b²)
Similar questions