If : a^2 sec^2 - b^2 tan^2 = c^2
Prove that : sin ^2 = c^2 - a^2 / c^2 - b^2
Is there any trigonometry expert out there?? plz help
Answers
Answered by
35
hey dear , don't worry , i am here.
plz mark me in brainlist answer.
Radhe Radhe
plz mark me in brainlist answer.
Radhe Radhe
Attachments:
anushkaakaanu:
Radhe Radhe bro :) thx for help
Answered by
23
Proof:
We have,
a² sec²θ - b² tan²θ = c²
⇒ a²/cos²θ - b² sin²θ/cos²θ = c²
⇒ a²- b² sin²θ/cos²θ = c²
⇒ a² - b² sin²θ = c²cos²θ
⇒ a² - b² sin²θ = c² (1 - sin²θ) [ ∵ sin²θ + cos²θ = 1]
⇒ a²- b² sin²θ = c² - c² sin²θ
⇒ sin²θ (c² - b²) = c² - a²
⇒ sin²θ = c²- a²/c² - b²
Hence Proved.
Hope this helps!
If it does then please mark it as BRAINLIEST!
Regards,
Soham Patil.
Similar questions