Math, asked by udayakumarkbudayankb, 1 year ago

if a=2+ \sqrt{3} find the value of a-1/a

Answers

Answered by DaIncredible
3
Heya friend,
Here is the answer you were looking for:
a = 2 +  \sqrt{3}  \\  \\  \frac{1}{a} =  \frac{1}{2 +  \sqrt{3} }

On rationalizing the denominator we get,

 \frac{1}{a}  =  \frac{1}{2 +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }  \\

Using the identity,

(x + y)( x - y) =  {x}^{2}  -  {y}^{2}

Putting x = 2
and y = √3

 \frac{1}{a}  =  \frac{2 -  \sqrt{3} }{ {(2)}^{2}  -  {( \sqrt{3} )}^{2} }  \\  \\  \frac{1}{a}  =  \frac{2 -  \sqrt{3} }{4 - 3}  \\  \\  \frac{1}{a}  = 2 -  \sqrt{3}  \\  \\ a -  \frac{1}{a}  = (2 +  \sqrt{3} ) - (2 -  \sqrt{3} ) \\  \\ a -  \frac{1}{a}  = 2 +  \sqrt{3}  - 2 +  \sqrt{3}  \\  \\ a -  \frac{1}{a}  = 2 \sqrt{3}


Hope this helps!!!

@Mahak24

Thanks...
☺☺

udayakumarkbudayankb: thank you
DaIncredible: my pleasure ^_^
DaIncredible: glad to help
Similar questions