Math, asked by StarTbia, 1 year ago

If A (20,10), B(0,20) are given, find the coordinates of the points which divide segment AB into five congruent parts.

Answers

Answered by JinKazama1
89
Logic Used:
1) Section Formula: 
P(x,y) = ( \frac{mx_{2}+nx_{1}}{m+n} ,  \frac{my_{2}+ny_{1}}{m+n} )  

where P(x,y) divides the line segment AB in the ratio m:n where 
A(x_{1},y_{1}) \:\: and\:\:\: B(x_{2},y_{2})

2) Let P,Q,R,S be the points which divide the line segment AB into five equal parts. 
 So,we observe that 
P divides AB in the ratio 1:4. 

Given:  A=(20,10) 
             B = (0,20) 

By Section Formula ,
P(x,y) = (\frac{4*20+1*0}{4+1} , \frac{4*10+1*20}{4+1} ) =(16,12)


3) Also,Q divides AB in the ratio 2:3 .

Q(x,y)=  (\frac{3*20+2*0}{4+1},  \frac{3*10+2*20}{4+1} )=(12,14)


4) Also, R divides AB in the ratio 3:2 .
 
R(x,y)= (\frac{2*20+3*0}{4+1} , \frac{2*10+3*20}{4+1} =(8,16)


5)And S divides the AB in the ratio  4:1 . 

S(x,y) =  (\frac{1*20+4*0}{4+1} , \frac{1*10+4*20}{4+1}) =(4,18)


Final Answer: Required co-ordinates are: 
 
\boxed{(6,12),(12,14),(8,16),(4,18)}
Attachments:
Answered by borkaraaditya1
31

Answer:

Answer in description plz mark this answer as brainlist answer

Attachments:
Similar questions