Physics, asked by Anonymous, 4 months ago

If a 20 cm tall rabbit is playing at a distance of 30 cm in front of a concave mirror attached to its cage. What will be its height in the mirror if the focal length is 16 cm?​

Answers

Answered by Qᴜɪɴɴ
21

Given:

  • Height of object = ho = 20cm
  • Object distance = u = -30cm
  • Focal length = f = -16 cm

━━━━━━━━━━━━━━━━

Need to find:

  • Height of image = Hi= ?

━━━━━━━━━━━━━━━━

Solution:

We know, the mirror formula:

 \dfrac{1}{v}  +  \dfrac{1}{u}  =  \dfrac{1}{f}

 \implies \dfrac{1}{v}  +  \dfrac{1}{( - 30)}  =  \dfrac{1}{( - 16)}

 \implies \:  \dfrac{1}{v}  =  \dfrac{1}{30}  -  \dfrac{1}{16}

 \implies \:  \dfrac{1}{v}  =  \dfrac{8 - 15}{240}

 \implies \:  \dfrac{1}{v}  =  \dfrac{ - 7}{240}

\purple{\boxed{\bold{ \implies \:  v =  \dfrac{ - 270}{7}}}}

━━━━━━━━━━━━━━━━

We know,

Magnification of mirror =

 \dfrac{hi}{ho}  =  \dfrac{ - v}{u}

 \implies \:  \dfrac{hi}{20}  =  - ( -  \dfrac{240}{7}  \times  \dfrac{1}{ - 30} )

 \implies \:  \dfrac{hi}{20}  =  \dfrac{ - 8}{7}

 \implies \: hi =  \dfrac{ - 8}{7}  \times 20 \: cm

 \implies \: hi =  \dfrac{ - 160}{7}

\red{\large{\bold{\boxed{ \implies \: hi \approx \:  - 22.8cm}}}}

The height of the rabbit in the mirror is 22.8cm.

Here -ve sign indicates that the image is real and inverted.

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\setlength{\unitlength}{25} \begin{picture}(10,10)\thicklines\qbezier(7,6)(8,3)(7,1) \put(1,3.5){\line(1,0){6.5}} \put(1,3.5){\line(1,0){6.5}}\put(4.5,3.5){\vector(0,1){1}}\put(4.5,4.5){\vector(1,0){1}}\put(4.5,4.5){\line(1,0){2.9}}\put(4.5,4.5){\line(1, - 1){2.8}}\put(7.4,4.5){\line( - 2, - 1){6.5}}\put(4.5,4.5){\vector(1, - 1){0.7}}\put(4.5,4.5){\vector(1, - 1){2}}\put(7.4,4.5){\vector( - 2, - 1){1}}\put(7.4,4.5){\vector( - 2, - 1){4}}\put(7.3,1.7){\line( - 1,0){5.5}}\put(1.8,3.5){\vector(0, - 1){1.8}}\put(7.3,1.7){\vector( - 1,0){3}}\put(4.4,3.1){$ \tt B $ }\put(3,3.1){$ \tt C $ }\put(1.75,3.75){$ \tt B' $ }\put(1.75,1.2){$ \tt A' $ }\put(5.25,3.1){$ \tt F $ }\put(4.4,4.75){$ \tt A $ }\put(7.5,4.7){$ \tt L $ }\put(7.7,3.25){$ \tt P $ }\put(7.4,1.5){$ \tt TheDiamond $ }\put(3.125,3.5){\circle*{0.15}}\put(5.4,3.5){\circle*{0.15}}\put(7.1,5.7){\line(1, - 1){0.5}}\put(7.3,4.8){\line(1, - 1){0.5}}\put(7.4,4.1){\line(1, - 1){0.5}}\put(7.1,1.3){\line(1, - 1){0.5}}\put(7.4,2.4){\line(1, - 1){0.5}}\put(7.5,3){\line(1, - 1){0.5}}\end{picture}

Here

  • AB= Object
  • A' B' = Image
  • F = Focal Length
  • C= Centre of Curvature
Answered by sksaqlainali10
0

A VERRY VERRY GOOD QUESTIONS .. I LIKE IT

Similar questions