Math, asked by thallaanirudh2004, 6 months ago

If a=26cm.,b=30cm. and cos C=63/65, then find c.​

Answers

Answered by dikshisubhigmailcom
1

Answer:

The required value is " c = 8 ".

Given that

In ΔABC, If a = 26 cm, b = 30 cm, cos C = 63/65

We know that

\begin{lgathered}cosC=\frac{a^{2}+b^{2}-c^{2} }{2ab}\\ \\cosC=\frac{26^{2}+30^{2}-c^{2}}{2(26)(30)}\\\\\frac{63}{65} =\frac{1576-c^{2}}{1560}\\\\\frac{63}{65}(1560) =1576-c^{2}\\\\1512=1576-c^{2}\\\\c^{2}=1576-1512\\\\c^{2}=64\\\\c=8\end{lgathered}

cosC=

2ab

a

2

+b

2

−c

2

cosC=

2(26)(30)

26

2

+30

2

−c

2

65

63

=

1560

1576−c

2

65

63

(1560)=1576−c

2

1512=1576−c

2

c

2

=1576−1512

c

2

=64

c=8

Answered by romanian8642
4

c {  }^{2}  = a {}^{2}  + b ^{2}  - 2ab \:  \: cos \: c

c

c^{2}  = (26) {}^{2}  + (30) { }^{} { }^{2}  - 2 \times 26 \times 30 \times 63upon \: 65

c {}^{2}  = 64

c = 8

Step-by-step explanation:

this is your solution hope it will help you

Similar questions