Math, asked by gvsriharish, 1 day ago

If a=2and b=3 then find the value of the following
(a÷b+b÷a)³

Answers

Answered by mahakulkarpooja615
0

Answer:

(\frac{a}{b} +\frac{b}{a})^{3}=  \frac{2197}{216} if a=2 and b=3.

Step-by-step explanation:

Given : The expression is (\frac{a}{b} +\frac{b}{a})^{3}, a=2 and b=3

To find : The value of above equation.

Solution :

  • The given expression is,  (\frac{a}{b} +\frac{b}{a})^{3}
  • The values of a and b are given.

       a=2 and b=3

  • Now, put these values in given equation,we get

     (\frac{a}{b} +\frac{b}{a})^{3} = (\frac{2}{3}+\frac{3}{2}  )^{3}

  • Carrying out cross multiplication, we get

             = (\frac{2*2+3*3}{2*3} )^{3}

             = (\frac{4+9}{6})^{3}

             = (\frac{13}{6})^{3}

             = \frac{2197}{216}      (∵13^{3} =2197, 6^{3}=216)

  • ∴  (\frac{a}{b} +\frac{b}{a})^{3}=  \frac{2197}{216} if a=2 and b=3.
Answered by sheeb12ansari
0

Given: a=2, b=3

We have to find the value of(a\div b+b\div a)^{3}.

For this, we will put the value of a and b in the given equation, and then we will add the equation.

And after that, we will find the cube of the value.

We are solving in the following way:

We have a=2, b=3

=>(2\div 3+3\div2)^{3} \\\\=>(\frac{2}{3} +\frac{3}{2} )^{3} \\\\=>(\frac{2\times 2+3\times 3}{3\times 2} )^{3}

=>(\frac{4+9}{6} )^{3} \\\\=>(\frac{13}{6} )^{3}

Solving the above equation further we get,

=>\frac{2197}{216} \\\\=>10.171

Hence, the value of (a\div b+b\div a)^{3}will be10.171.

Similar questions