If (a + 2b + c) = 0, then show that a^3 + 8b^3 + c^3 = 6abc.
Answers
Answered by
5
▬▬▬▬▬ஜ۩۞۩ஜ▬▬▬▬▬▬
(a + 2b + c) = 0
(a + 2b + c)³ = 0³ [Cubing both sides]
=>(a + 2b)³ + 3(a + 2b)²c + 3(a + 2b)c² + c³ = 0
=>(a³ + 6a²b + 12ab² + 8b³) + 3c(a + 2b)(a + 2b + c) + c³ = 0
=> (a³ + 8b³ + c³) + 6ab(a + 2b) = 0
=> a³ + 8b³ + c³ - 6abc = 0
=>a³ + 8b³ + c³ = 6abc. [Hence, proved]
▬▬▬▬▬ஜ۩۞۩ஜ▬▬▬▬▬▬
Answered by
4
❏ Question:-
Q) if (a+2b+c)=0 then,
prove that , a³+8b³+c³=6abc.
❏ Solution:-
❚➾
Now , we know that ,
(X³+Y³+Z³)-3XYZ=(X+Y+Z)(X²+Y²+Z²-XY-YZ-ZX)
•Now if, (X+Y+Z)=0, then;
(X³+Y³+Z³)-3XYZ=0×(X²+Y²+Z²-XY-YZ-ZX)
➾(X³+Y³+Z³)-3XYZ=0
➾(X³+Y³+Z³)=3XYZ [ ]
❚ Now , from the Given problem,.
•(a+2b+c)=0
[ Now, by using the above property,
as (a+2b+c)=0, so ]
━━━━━━━━━━━━━━━━━━━━━━━
#answerwithquality & #BAL
Similar questions