Math, asked by StrongGirl, 9 months ago

If (a-√2bcosx)(a +√2bcosy) = a² - b² then value of dy/dx at (π/4 , π/4) is :

Attachments:

Answers

Answered by BrainlyTornado
16

ANSWER:

  • Option 2) (a + b) / (a - b) is correct.

GIVEN:

  • (a - √2 b cos x)(a + √2 b cos y) = a² - b²

TO FIND:

  • The value of dy/dx at (π/4 , π/4).

EXPLANATION:

(a - √2 b cos x)(a + √2 b cos y) = a² - b²

Differentiate w.r.t x on both sides.

Left side:

 \sf \dfrac{d}{dx}(a - \sqrt{2} \ b \ cos \ x)(a + \sqrt{2} \ b \ cos \ y)

\boxed{ \bold{ \large{ \gray{\dfrac{d}{dx}uv = uv' + vu'}}}}

 \sf uv' =(a - \sqrt{2} \ b \ cos \ x)  \dfrac{d}{dx}(a + \sqrt{2} \ b \ cos \ y)

 \sf \dfrac{d}{dx}(a + \sqrt{2} \ b \ cos \ y) = \dfrac{d}{dx}a +\dfrac{d}{dx} \sqrt{2} \ b \ cos \ y

\boxed{ \bold{ \large{ \gray{\dfrac{d}{dx}constant  = 0}}}}

 \sf \dfrac{d}{dx}(a + \sqrt{2} \ b \ cos \ y) = 0+ \sqrt{2}b \dfrac{d}{dx} cos \ y

\boxed{ \bold{ \large{ \gray{\dfrac{d}{dx}cos \ x=  -  sin \ x}}}}

 \sf \dfrac{d}{dx}(a + \sqrt{2} \ b \ cos \ y)  =  \sqrt{2}b(- sin \ y\dfrac{dy}{dx})

 \sf \dfrac{d}{dx}(a + \sqrt{2} \ b \ cos \ y)  =  -  \sqrt{2}b( sin \ y\dfrac{dy}{dx})

 \sf uv' =(a - \sqrt{2} \ b \ cos \ x)  \left(-  \sqrt{2} \ b \ sin \ y \dfrac{dy}{dx} \right)

 \sf vu' =(a + \sqrt{2} \ b \ cos \ y)  \dfrac{d}{dx}(a - \sqrt{2} \ b \ cos \ x)

 \sf \dfrac{d}{dx}(a - \sqrt{2} \ b \ cos \ x) = \dfrac{d}{dx}a - \dfrac{d}{dx}\sqrt{2} \ b \ cos \ x

\boxed{ \bold{ \large{ \gray{\dfrac{d}{dx}constant  = 0}}}}

 \sf \dfrac{d}{dx}(a - \sqrt{2} \ b \ cos \ x) = 0 -  \sqrt{2}b \dfrac{d}{dx} cos \ x

\boxed{ \bold{ \large{ \gray{\dfrac{d}{dx}cos \ x=  -  sin \ x}}}}

 \sf \dfrac{d}{dx}(a - \sqrt{2} \ b \ cos \ x) = \sqrt{2} \ b \ sin \ x

 \sf vu' =(a + \sqrt{2} \ b \ cos \ y)  (\sqrt{2} \ b \ cos \ x)

d/dx (uv) = (a - √2 b cos x)( - √2 b sin y (dy/dx)) + (a + √2 b cos y)(√2 b cos x)

Right side:

 \sf \dfrac{d}{dx}( {a}^{2}  -  {b}^{2} )

\boxed{ \bold{ \large{ \gray{\dfrac{d}{dx}constant  = 0}}}}

 \sf \dfrac{d}{dx}( {a}^{2}  -  {b}^{2} ) = 0

Equate both the sides

(a + √2 b cos y)(√2 b cos x) = (a - √2 b cos x)(√2 b sin y (dy/dx))

 \sf sin \ y \ \dfrac{dy}{dx} =  \dfrac{(a +  \sqrt{2} \  b \ cos \ y)(cos \ x)}{(a -  \sqrt{2} \  b \ cos \ x)}

 \sf  \ \dfrac{dy}{dx} =  \dfrac{(a +  \sqrt{2} \  b \ cos \ y)(cos \ x)}{(sin \ y)(a -  \sqrt{2} \  b \ cos \ x)}

 \sf  \ \dfrac{dy}{dx}_{\pi\!/4,\ \pi\!/4 }=  \dfrac{(a +  \sqrt{2} \  b \ cos \ {45}^{ \circ} )(cos \ {45}^{ \circ})}{(sin \ {45}^{ \circ})(a -  \sqrt{2} \  b \ cos \ {45}^{ \circ})}

π / 4 = 45°

\boxed{ \bold{ \large{ \gray{Sin\  45^{\circ} = Cos\ 45^{\circ} = \dfrac{1}{\sqrt{2}}}}}}

 \sf  \ \dfrac{dy}{dx}_{\pi\!/4,\ \pi\!/4 }=  \dfrac{(a +  \sqrt{2} \  b \ cos \ {45}^{ \circ} )}{(a -  \sqrt{2} \  b \ cos \ {45}^{ \circ})}

 \sf  \ \dfrac{dy}{dx}_{\pi\!/4,\ \pi\!/4 }=  \dfrac{ \left(a +  \sqrt{2} \  b \ \dfrac{1}{\sqrt{2}} \right)}{ \left(a -  \sqrt{2} \  b \ \dfrac{1}{\sqrt{2}} \right)}

 \sf  \ \dfrac{dy}{dx}_{\pi\!/4,\ \pi\!/4 }=  \dfrac{ a+ b}{a - b}

Hence the value of dy/dx at (π/4 , π/4) is (a + b) / (a - b)

Answered by Anonymous
10

Answer :

dy/dx = a-b/a+b and dx/dy = a+b/a-b

Note :

  • I guess this quésn was asked in JEE mains 2020 , sept 4 morning shift , hope u gave it exam best
  • The gyst of quésn us just to use product rule of diiferentaition
  • Product rule (uv)' = uv'+vu'

Solution :

  • (a-√2bcosx)(a+√2bcosy) = a²-b²
  • Differentiating on both sides
  • L.H.S apply , product rule , R.H.S derivative of constant becomes zero

  • (a-√2bcosx)'(a+√2bcosy) + (a-√2bcosx)(a+√2bcosy)' = 0

  • (√2bsinx)(a+√2bcosy)+(a-√2bcosx)(-√2bsiny y')---(1)

  • We need dy/dx at point (π/4,π/4) , so substitute the point in ---(1)

  • (√2b(1/√2))(a+√2b(1/√2))+(a-√2b(1/√2)(-√2b(1/√2)y')= 0

  • [Since , cosπ/4 = sinπ/4 = 1/√2]

  • b(a+b)+(a-b)(-b)y'= 0

  • by'(a-b) = b(a+b)

  • y' = a+b/a-b

  • dy/dx at (π/4 , π/4) = a+b/a-b

Some people thought the Quéstìon was dx/dy if it is the case , dx/dy = a-b/a+b

But here in the Quéstìon it was asked by/dx , hence dy/dx = a+b/a-b

Similar questions