Physics, asked by aarushity, 5 months ago

if a=2i+3j+k and b=3i+2j+4k,then find the value of (a+b)×(a-b)​

Answers

Answered by Anonymous
13

Explanation:

Given:

  • \sf{\overrightarrow{a}=2\hat{i}+3\hat{j}+\hat{k}}
  • \sf{\overrightarrow{b}=3\hat{i}+2\hat{j}+4\hat{k}}

To find:

  • Value of \sf{(\overrightarrow{a}+\overrightarrow{b})\times(\overrightarrow{a}-\overrightarrow{b})}

Solution:

At first, find the value of \sf{(\overrightarrow{a}+\overrightarrow{b})\:and\:(\overrightarrow{a}-\overrightarrow{b})}.

 \star \:  \sf \: ( \overrightarrow{a} +  \overrightarrow{b}) \\ \\  =  \sf \: (2 \hat{i} + 3 \hat{j} +  \hat{k} + 3 \hat{i} + 2 \hat{j} + 4 \hat{k}) \\ \\  =  \sf \: (5 \hat{i} + 5 \hat{j} + 5 \hat{k})

&

 \star \:  \sf \: ( \overrightarrow{a} -  \overrightarrow{b}) \\  \\ =  \sf \:  \{(2 \hat{i} + 3 \hat{j} +  \hat{k}) - (3 \hat{i} + 2 \hat{j} + 4 \hat{k}) \} \\  \\=   \sf \:  (2 \hat{i} + 3 \hat{j} +  \hat{k}- 3 \hat{i}  -  2 \hat{j}  - 4 \hat{k}) \\ \\  \sf =  ( -  \hat{i} +  \hat{j} - 3 \hat{k})

Now find the value of \sf{(\overrightarrow{a}+\overrightarrow{b})\times(\overrightarrow{a}-\overrightarrow{b})}.

\sf{(\overrightarrow{a}+\overrightarrow{b})\times(\overrightarrow{a}-\overrightarrow{b})} \\  \\  =  \sf \: (5 \hat{i} + 5 \hat{j} + 5 \hat{k}) \times ( -  \hat{i}  +  \hat{j} - 3 \hat{k})\\ \\=\sf\left|\begin{array}{ccc} \ \ \hat{i} & \ \ \hat{j} & \ \ \hat{k} \\ \ \ 5 & \ \ 5 & \  \ 5 \\ -1 & \ \ 1 & - 3\end{array}\right|\\ \\ =  \sf \:  \hat{i}( - 15 - 5) +  \hat{j}( - 5 + 15) +  \hat{k}(5  + 5) \\  \\  \sf \:  =  - 20 \hat{i} + 10 \hat{j} + 10 \hat{k}

Hence, the value of \sf{(\overrightarrow{a}+\overrightarrow{b})\times(\overrightarrow{a}-\overrightarrow{b})} is \sf{- 20 \hat{i} + 10 \hat{j} + 10 \hat{k}}

Similar questions