Physics, asked by SumanBarik, 9 months ago

If A=2i +3j-k and B= - i+3j+4k,then what will be a unit vector perpendicular to both A and B? ​

Answers

Answered by Rohit18Bhadauria
11

Given:

Two vectors-

A=2\hat{i}+3\hat{j}-\hat{k}

B=-\hat{i}+3\hat{j}+4\hat{k}

To Find:

A unit vector perpendicular to both A and B

Concept to be Used:

A vector perpendicular to two non-parallel vectors is the cross product of given two vectors  

Solution:

We know that,

  • Unit vector of a vector is given by

\pink{\boxed{\bf{\hat{A}=\dfrac{\vec{A}}{\mid A\mid}}}}

\rule{190}{1}

Now, firstly we have to find cross product of A and B

\longrightarrow\rm{A\times B}

\longrightarrow\rm{\left|\begin{array}{ccc}\hat{i} &\hat{j}&\hat{k}\\2&3&-1\\-1&3&4\end{array}\right|}

\longrightarrow\rm{\hat{i}(12+3)-\hat{j}(8-1)+\hat{k}(6+3)}

\longrightarrow\rm{\hat{i}(15)-\hat{j}(7)+\hat{k}(9)}

\longrightarrow\rm{15\hat{i}-7\hat{j}+9\hat{k}}

\rule{190}{1}

Let \rm{\vec{C}=15\hat{i}-7\hat{j}+9\hat{k}}

Now, we have to find the unit vector along \vec{C}

So,

\longrightarrow\rm{\hat{C}=\dfrac{\vec{C}}{\mid C\mid}}

\longrightarrow\rm{\hat{C}=\dfrac{15\hat{i}-7\hat{j}+9\hat{k}}{\sqrt{(15)^{2}+(-7)^{2}+(9)^{2}}}}

\longrightarrow\rm{\hat{C}=\dfrac{15\hat{i}-7\hat{j}+9\hat{k}}{\sqrt{225+49+81}}}

\longrightarrow\rm{\hat{C}=\dfrac{15\hat{i}-7\hat{j}+9\hat{k}}{\sqrt{355}}}

\longrightarrow\rm\green{\hat{C}=\dfrac{15\hat{i}}{\sqrt{355}}-\dfrac{7\hat{j}}{\sqrt{355}}+\dfrac{9\hat{k}}{\sqrt{355}}}

Hence, \bf{\hat{C}} is the required unit vector.


SumanBarik: thanks
Similar questions