Physics, asked by Anonymous, 1 month ago

if a=2i+5j and b=2i-j then the unit vector along a+b will be

Answers

Answered by nirman95
2

Given:

a=2i+5j and b=2i-j.

To find:

The unit vector along a+b?

Calculation:

 \vec{a} = 2 \hat{i} + 5 \hat{j}

 \vec{b} = 2 \hat{i} -  \hat{j}

Now, vector addition:

 \vec{a} +  \vec{b} = (2 \hat{i} + 5 \hat{j}) + ( 2\hat{i} -  \hat{j})

 \implies \vec{a} +  \vec{b} = (2 + 2) \hat{i} + (5  - 1)\hat{j}

 \implies \vec{a} +  \vec{b} =4\hat{i} + 4\hat{j}

 \implies \vec{c}  =4\hat{i} + 4\hat{j}  \:  \:  \:  \:  \: ... \: ...(let)

 \implies \hat{c}  = \dfrac{4\hat{i} + 4\hat{j}  }{ | \vec{c}| }

 \implies \hat{c}  = \dfrac{4\hat{i} + 4\hat{j}  }{  \sqrt{ {4}^{2}  +  {4}^{2} } }

 \implies \hat{c}  = \dfrac{4\hat{i} + 4\hat{j}  }{4  \sqrt{ 2} }

 \boxed{ \implies \hat{c}  = \dfrac{\hat{i} + \hat{j}  }{ \sqrt{ 2} }}

Hope It Helps.

Similar questions