If a=√2x+3y+√2z+3y/√2x+3y-√2-3y find 3ya^2-4xa+3y
Answers
Answered by
0
Answer:
4x^2y + 12xy^2 + 9y^3
Step-by-step explanation:
4x2y + 12xy2 + 9y3
Reorder the terms:
12xy2 + 4x2y + 9y3
Factor out the Greatest Common Factor (GCF), 'y'.
y(12xy + 4x2 + 9y2)
Factor a trinomial.
y((2x + 3y)(2x + 3y))
Final result:
y(2x + 3y)(2x + 3y)
Expression:
4x^2y + 12xy^2 + 9y^3
Answered by
0
Answer:
Any value if y=xy=x, 0 if y≠xy≠x
The idea behind is shown below, I will just briefly touch it:
(2x+3y−3x−2y)(2x+3y+3x+2y)=0⇔(y−x)⋅5⋅(x+y)=0(2x+3y−3x−2y)(2x+3y+3x+2y)=0⇔(y−x)⋅5⋅(x+y)=0
So either x=yx=y and x+yx+y can have any arbitrary value or x≠yx≠y and then indeed x+y=0
Similar questions