if A=2y²+3x-x²,B=2x²-3y²,C=3x²-5xy find A+B+C
Answers
Answered by
1
Answer:
Step-by-step explanation:
A=2y^2+3x-x^2A=2y2+3x−x2
B=3x^2-y^2B=3x2−y2
C=5x^2-3xyC=5x2−3xy
\text{Now,}Now,
(i)A+B(i)A+B
=2y^2+3x-x^2+3x^2-y^2=2y2+3x−x2+3x2−y2
=2x^2+3x+y^2=2x2+3x+y2
(ii)B+C(ii)B+C
=3x^2-y^2+5x^2-3xy=3x2−y2+5x2−3xy
=8x^2-3xy-y^2=8x2−3xy−y2
(iv)B-C(iv)B−C
=(3x^2-y^2)-(5x^2-3xy)=(3x2−y2)−(5x2−3xy)
=3x^2-y^2-5x^2+3xy=3x2−y2−5x2+3xy
=-2x^2+3xy+y^2=−2x2+3xy+y2
(v)A+B+C(v)A+B+C
=2y^2+3x-x^2+3x^2-y^2+5x^2-3xy=2y2+3x−x2+3x2−y2+5x2−3xy
=7x^2-3xy+y^2+3x=7x2−3xy+y2+3x
(vi)A+B-C(vi)A+B−C
=2y^2+3x-x^2+3x^2-y^2-(5x^2-3xy)=2y2+3x−x2+3x2−y2−(5x2−3xy)
=2y^2+3x-x^2+3x^2-y^2-5x^2+3xy=2y2+3x−x2+3x2−y2−5x2+3xy
=3x^2+3xy+y^2+3x=3x2+3xy+y2+3x
Answered by
1
Step-by-step explanation:
A+B+C=2y²+3x-x²+2x²-3y²+3x²-5xy
Similar questions