Math, asked by ekkakshirai, 2 months ago

If a=√3+1/√3-1 and b=1/a, find the value of a²+ab+b².​

Answers

Answered by StormEyes
11

Solution!!

a = (√3 + 1)/(√3 - 1)

b = 1/a

To find:-

a² + ab + b²

a = (√3 + 1)/(√3 - 1)

= (√3 + 1)/(√3 - 1) × (√3 + 1)/(√3 + 1)

= [(√3 + 1)(√3 + 1)]/[(√3 - 1)(√3 + 1)]

= [(√3 + 1)²]/[(√3)² - (1)²]

= [3 + 1 + 2√3]/[3 - 1]

= [4 + 2√3]/2

= [2(2 + √3)]/2

= 2 + √3

b = 1/a

= 1/(2 + √3)

= 1/(2 + √3) × (2 - √3)/(2 - √3)

= [1(2 - √3)]/[(2 + √3)(2 - √3)]

= (2 - √3)/[(2)² - (√3)²]

= (2 - √3)/[4 - 3]

= (2 - √3)/1

= 2 - √3

+ ab + = (2 + 3)² + (2 + 3)(2 - 3) + (2 - 3)²

= (4 + 3 + 4√3) + [(2)² - (√3)²] + (4 + 3 - 4√3)

= (7 + 4√3) + (4 - 3) + (7 - 4√3)

= 7 + 4√3 + 4 - 3 + 7 - 4√3

= 7 + 4 - 3 + 7 + 4√3 - 4√3

= 18 - 3

= 15

+ ab + = 15

Answered by 12thpáìn
33

Given

  • \\\sf a =  \dfrac{ \sqrt{3}  + 1}{ \sqrt{3} - 1 }

  • \\\sf b =  \dfrac{1}{a} \\

To Find

  • \\\bf{Value ~~of ~~a²+b²+2ab }\\

Formula Used

  • \boxed{\bf{(a+b)²=a²+b²+2ab}}
  • \boxed{\bf{(a-b)²=a²+b²-2ab}}
  • \boxed{\bf{(a+b)(a-b)=a²-b²}}\\

Solution

\\ \sf{~~~~~:\implies a =  \dfrac{ \sqrt{3}  + 1}{ \sqrt{3} - 1 } }

\sf{~~~~~:\implies a =  \dfrac{ \sqrt{3}  + 1}{ \sqrt{3} - 1 }  \times  \dfrac{ \sqrt{3}  + 1}{ \sqrt{3} + 1 } }

\sf{~~~~~:\implies a =  \dfrac{( \sqrt{3}) ^{2}   + (1)^{2}  + 2 \times  \sqrt{3} \times 1 }{( \sqrt{3} ) ^{2} -( 1) ^{2}  } }

\sf{~~~~~:\implies a =  \dfrac{3  + 1  + 2  \sqrt{3} }{3 - 1  } }

\sf{~~~~~:\implies a =  \dfrac{4  + 2  \sqrt{3} }{2 } }

\sf{~~~~~:\implies a =  \dfrac{2(2 +  \sqrt{3}) }{2 } }

 \bf{~~~~~:\implies a =  2 +  \sqrt{3}  }\\

  \pink{ \bf{b =  \dfrac{1}{a} }}

 \sf{~~~~~:\implies b =  \dfrac{1}{2 +  \sqrt{3} } }

\sf{~~~~~:\implies b =  \dfrac{1}{2 +  \sqrt{3} } \times  \dfrac{2 -  \sqrt{3} }{2 -  \sqrt{3} }  }

\sf{~~~~~:\implies b =  \dfrac{2 -  \sqrt{3} }{(2 ) ^{2}  -  ( \sqrt{3}) ^{2}  } }

\sf{~~~~~:\implies b =  \dfrac{2 -  \sqrt{3} }{4 - 3} }

\bf{~~~~~:\implies b =  2 -  \sqrt{3} }\\

Now;

\\\sf{~~~~~:\implies a²+b²+2ab=??}

\sf{~~~~~:\implies a²+b²+2ab=(a+b)²}

\sf{~~~~~:\implies a²+b²+2ab=(2+\sqrt{3}+2-\sqrt{3})²}

\sf{~~~~~:\implies a²+b²+2ab=(4+ \xcancel{\sqrt{3}}  - \xcancel{\sqrt{3}})²}

\sf{~~~~~:\implies a²+b²+2ab=4  ²}

\pink{\bf{~~~:\implies a²+b²+2ab={16}}} \\  \\  \\

Verification

\sf{~~~~~:\implies a²+b²+2ab=(a+b)²}

{~~~~~:\implies\small \sf{(2 +  \sqrt{3}) ²+(2 -  \sqrt{3} )²+2(2 +  \sqrt{3})(2 -  \sqrt{3}  )=(2 +  \sqrt{3} + 2 -  \sqrt{3}  )²}}

{~~~~~:\implies\small\sf{ 4   +  3 + 4 \sqrt{3}   +4+3 - 4 \sqrt{3} +  2(4 - 3)=(4  )²}}

{~~~~~:\implies\small\sf{ 7 +7 +  \cancel{ 4 \sqrt{3}}  -  \cancel{ 4 \sqrt{3} }+  2=16}}

{~~~~~:\implies \small\sf{ 14 + 2=16}}

{~~~~~:\implies \small\sf{ 16=16}}

Similar questions