If a=√3+1/√3-1 and b=1/a, find the value of a²+ab+b².
Answers
Answered by
11
Solution!!
a = (√3 + 1)/(√3 - 1)
b = 1/a
To find:-
a² + ab + b²
a = (√3 + 1)/(√3 - 1)
= (√3 + 1)/(√3 - 1) × (√3 + 1)/(√3 + 1)
= [(√3 + 1)(√3 + 1)]/[(√3 - 1)(√3 + 1)]
= [(√3 + 1)²]/[(√3)² - (1)²]
= [3 + 1 + 2√3]/[3 - 1]
= [4 + 2√3]/2
= [2(2 + √3)]/2
= 2 + √3
b = 1/a
= 1/(2 + √3)
= 1/(2 + √3) × (2 - √3)/(2 - √3)
= [1(2 - √3)]/[(2 + √3)(2 - √3)]
= (2 - √3)/[(2)² - (√3)²]
= (2 - √3)/[4 - 3]
= (2 - √3)/1
= 2 - √3
a² + ab + b² = (2 + √3)² + (2 + √3)(2 - √3) + (2 - √3)²
= (4 + 3 + 4√3) + [(2)² - (√3)²] + (4 + 3 - 4√3)
= (7 + 4√3) + (4 - 3) + (7 - 4√3)
= 7 + 4√3 + 4 - 3 + 7 - 4√3
= 7 + 4 - 3 + 7 + 4√3 - 4√3
= 18 - 3
= 15
a² + ab + b² = 15
Answered by
33
Given
To Find
Formula Used
Solution
Now;
Verification
Similar questions