Math, asked by Khankaji, 5 months ago

If a=√3+1/√3-1and b=√3-1/√3+1, find the value of a^2+ab+b^2/a^2-ab+b^2​

Answers

Answered by Bidikha
1

Given-

a =  \frac{ \sqrt{3} + 1 }{ \sqrt{3} - 1 } \:  and \:  \: b =  \frac{ \sqrt{3}  - 1}{ \sqrt{3} + 1 }

To find -

the \: value \: of \:  \:  \frac{ {a}^{2}  + ab +  {b}^{2} }{ {a}^{2} - ab +  {b}^{2}  }

Solution -

a =  \frac{ \sqrt{3}  + 1}{ \sqrt{3}  - 1}

By rationalising the denominator we will get -

a =  \frac{ {( \sqrt{3}  + 1)}^{2} }{( \sqrt{3}  - 1)( \sqrt{3} + 1) }

a =  \frac{ {( \sqrt{3} )}^{2} +  {(1)}^{2} + 2 \sqrt{3}   }{ {( \sqrt{3} }^{2} ) -  {(1)}^{2} }

a =  \frac{3 + 1 + 2 \sqrt{3} }{3 - 1}

a =  \frac{4 + 2 \sqrt{3} }{2}

a = 2 +  \sqrt{3}

And,

b =  \frac{ \sqrt{3}  - 1}{ \sqrt{3}  + 1}

By rationalising the denominator we will get -

b =  \frac{ {( \sqrt{3}  - 1)}^{2} }{( \sqrt{3} + 1)( \sqrt{3} - 1)  }

b =  \frac{ { (\sqrt{3}) {}^{2}   +  ({1})^{2}  - 2 \sqrt{3} } }{ { \sqrt{3}  }^{2} -  {1}^{2}  }

b =  \frac{3 + 1 - 2 \sqrt{3} }{3 - 1}

b =  \frac{4 - 2 \sqrt{3} }{2}

b = 2 -  \sqrt{3}

Now,

 =  \frac{ {a}^{2} + ab +  {b}^{2}  }{ {a}^{2}  - ab +  {b}^{2} }

By putting the values we will get -

 =  \frac{ {(2 +  \sqrt{3})  }^{2} + (2 +  \sqrt{3} )(2 -  \sqrt{3} ) +  {(2 -  \sqrt{3} )}^{2}  }{ {(2 +  \sqrt{3} )}^{2}  - (2 +  \sqrt{3} )(2 -  \sqrt{3} ) + ( {2 -  \sqrt{3} )}^{2} }

 =  \frac{ {(2)}^{2} +  {( \sqrt{3}) }^{2}  + 4 \sqrt{3}  +  {(2)}^{2} -  {( \sqrt{3}) }^{2}  +  {(2)}^{2}   +  {( \sqrt{3}) }^{2}  - 4 \sqrt{3}  }{ {(2)}^{2}  +  {( \sqrt{3}) }^{2} + 4 \sqrt{3} -  {(2)}^{2}    -  {( \sqrt{3}) }^{2} +  {(2)}^{2}  +  {( \sqrt{3}) }^{2}  - 4 \sqrt{3}  }

 =  \frac{(4 + 3 + 4 \sqrt{3})  + (4 - 3) +( 4 + 3 - 4 \sqrt{3} )}{(4 + 3 + 4 \sqrt{3} )- (4 - 3)  + (4 + 3 - 4 \sqrt{3}) }

 =  \frac{7 + 4 \sqrt{3} + 1 + 7 - 4 \sqrt{3}  }{7 + 4 \sqrt{3}  - 1 + 7 - 4 \sqrt{3} }

 =  \frac{15}{13}

Therefore

the \: value \: of \:  \frac{ {a}^{2}  + ab +  {b}^{2} }{ {a}^{2}  - ab +  {b}^{2} }  \: is \:  \:  \frac{15}{13}

Similar questions