Math, asked by smamgain16, 10 months ago

If a=√3+1

Find the value of a^4+16/a^4

Attachments:

Answers

Answered by vanibattus
0

Answer:

this is ur solution

MARK AS BRAINLIEST

Attachments:
Answered by sharmaaashutosh169
0

We need to recall the following Formula

1. (a+b)^2=a^2+b^2+2ab

2. (a+b)(a-b)=a^2-b^2

And the concept of conjugate

Let a+b\sqrt{c} is expression then  a-b\sqrt{c} is conjugate of this expression

This problem is about the linear equation.

Given  a=\sqrt{3}+1

We have to find the value of  a^4+\frac{16}{a^4}

Substitute a value in an expression a^4+\frac{16}{a^4}

then,

({\sqrt{3}+1  })^4+\frac{16}{({\sqrt{3}+1  })^4}={({\sqrt{3}+1  })^2}^2+\frac{16}{{({\sqrt{3}+1  })^2}^2}\\

                                =(3+1+2\sqrt{3})^2+\frac{16}{(3+1+2\sqrt{3})^2}

                                =(4+2\sqrt{3})^2+\frac{16}{(4+2\sqrt{3})^2}

                                =16+12+4\sqrt{3} +\frac{16}{16+12+4\sqrt{3} }

Now take the LCM

 16+12+4\sqrt{3} +\frac{16}{16+12+4\sqrt{3} }=28+4\sqrt{3} +\frac{16}{28+4\sqrt{3}}

                                              =\frac{(28+4\sqrt{3} )^2+{16}}{28+4\sqrt{3}}

                                              =\frac{(784+48+8\sqrt{3})+16 }{28+4\sqrt{3} }

                                              =\frac{848+8\sqrt{3} }{28+4\sqrt{3} }

Multiply the conjugate 28-4\sqrt{3} to simplify the expression

\frac{848+8\sqrt{3} }{28+4\sqrt{3} }=\frac{848+8\sqrt{3} }{28+4\sqrt{3} }\times \frac{28-4\sqrt{3} }{28-4\sqrt{3} }

              =\frac{848+8\sqrt{3} \times28-4\sqrt{3}  }{28^2-(4\sqrt{3})^2}

              =\frac{23648-3168\sqrt{3} }{736}

Hence the value of a^4+\frac{16}{a^4} is \frac{23648-3168\sqrt{3} }{736}.

Similar questions