Math, asked by vinasingh313gmailcom, 8 months ago

If a=3+2√2 and b =3-2√2 then find of a²+b²​

Answers

Answered by Anonymous
4

Answer:

 \boxed{\huge{\sf 34}}

Given:

 \sf a = 3 + 2 \sqrt{2}  \\ \sf b = 3 - 2 \sqrt{2}

To Find:

 \sf {a}^{2}  +  {b}^{2}

Step-by-step explanation:

Method - 1:

 \sf \implies  {a}^{2}  +  {b}^{2}  \\  \\ \sf \implies  {(3 + 2 \sqrt{2} )}^{2}  +  {(3 - 2 \sqrt{2} )}^{2}  \\  \\ \sf \implies ( {(3)}^{2}  + (2 \sqrt{2} ) ^{2}  + 2(3)(2 \sqrt{2} )) + ( {(3)}^{2}  + (2 \sqrt{2} ) ^{2}   -  2(3)(2 \sqrt{2} )) \\  \\ \sf \implies (9 + 8  +  12 \sqrt{2} ) + (9 + 8 - 12 \sqrt{2} ) \\  \\ \sf \implies 9 + 8  + 12 \sqrt{2}  + 9 + 8 - 12 \sqrt{2}  \\  \\ \sf \implies 9 + 8 + 9 + 8 \\  \\ \sf \implies 34

Method - 2:

By using algebraic expression i.e. a² + b² = (a + b)² - 2ab

\sf \implies  {a}^{2}  +  {b}^{2}  \\  \\ \sf \implies  {(a + b)}^{2}  - 2ab \\  \\\sf \implies ((3 + 2 \sqrt{2}  ) + (3 - 2 \sqrt{2} )^{2}  - 2(3 + 2 \sqrt{2} )(3 - 2 \sqrt{2} ) \\  \\ \sf \implies  {(3 + 2 \sqrt{2}  + 3 - 2 \sqrt{2} )}^{2}   -  2( {(3)}^{2}  -  {(2 \sqrt{2} )}^{2} ) \\  \\ \sf \implies  {(3 + 3)}^{2}   - 2(9 - 8) \\  \\ \sf \implies  {(6)}^{2}  - 2(1) \\  \\ \sf \implies 36 - 2 \\  \\ \sf \implies 34

Additional information:

Algebraic expressions:

 \sf  {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab  \\ \\   \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  =  {(a - b)}^{2} + 4ab  \\  \\ \sf (a - b)^{2}  = {a}^{2}  +  {b}^{2}   -  2ab  \\ \\   \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  =  {(a  +  b)}^{2}  -  4ab    \\  \\ \sf  {a}^{2}  -  {b}^{2}  = (a + b)(a - b) \\  \\ \sf  {a}^{2}  +  {b}^{2}  =  {(a + b)}^{2}  - 2ab  \\ \\   \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  {(a - b)}^{2}  + 2ab

Similar questions