Math, asked by prachiagarwalccu, 1 year ago

If a= 3+2√2 find
1) a²+1/a²
2) a³+1/a³

Answers

Answered by NitinKumar11111
0
solution:-

a = 3 + 2√2
1/a = 1/(3 + 2√2)
= [1/(3 + 2√2)] x [3 - 2√2][3 - 2√2]
= (3 - 2√2)

(a6 + a4 + a2 +1) / a3
= (a3 + a + 1/a + 1/a3)
= (3 + 2√2)3 + (3 + 2√2) + (3 - 2√2) + (3 - 2√2)3
= (3 + 2√2)3 + (3 - 2√2)3 + (3 + 2√2) + (3 - 2√2)
=[2(3)3 + 6(3)(2√2)2] + [6]
= [54 + 144] + 6
= 198 + 6
= 204.









Answered by Anonymous
5

 \sf{a = 3 + 2 \sqrt{2}}

  \sf{\frac{1}{a}  = \frac{1}{3 + 2 \sqrt{2} }  }

 \sf{rationalise \: the \: denominator}

  \sf{\frac{1}{a}  = \frac{1}{3 + 2 \sqrt{2} }   \times  \frac{3 - 2 \sqrt{2} }{3 - 2 \sqrt{2} } }

  \sf{\frac{1}{a}  = \frac{3 - 2 \sqrt{2} }{ {3}^{2}   -   {(2 \sqrt{2} )}^{2}  }  }

  \sf{\frac{1}{a}  = \frac{3 - 2 \sqrt{2} }{9 - 8} }

  \sf{\frac{1}{a}  = {3  -  2 \sqrt{2} }  }

  \sf{a + \frac{1}{a}  = 3 + 2 \sqrt{2}  + 3 - 2 \sqrt{2} }

  \sf{a + \frac{1}{a}  = 6}

1) \:  \sf{(a +  \frac{1}{a})}^{2}   =  {a}^{2}  +  \frac{1}{ {a}^{2} }  + 2

  \sf{{6}^{2}  =  {a}^{2}  +  \frac{1}{ {a}^{2} }  + 2}

 \sf{{a}^{2}  +  \frac{1}{ {a}^{2} }  = 36 - 2}

 \fbox{ \sf{{a}^{2}  +  \frac{1}{ {a}^{2} }  = 34}}

2) \:  \sf{ {(a +  \frac{1}{a})}^{3} =  {a}^{3}  +  \frac{1}{ {a}^{3} }  + 3(a +  \frac{1}{a} )}

 \sf{ {6}^{3}  = {a}^{3}  +  \frac{1}{ {a}^{3} }  + 3(6)}

 \sf{{a}^{3}  +  \frac{1}{ {a}^{3} }   = 216 - 18}

 \fbox{\sf{{a}^{3}  +  \frac{1}{ {a}^{3} } = 198}}

Similar questions