Math, asked by akashgoutam22, 8 months ago

If a=3+2√2 find the value of a²-1​/a²​

Answers

Answered by kanishkayadav21
0

This is your answer

Hope this may helpful

Attachments:
Answered by Rohith200422
6

Question:

If  a = 3 +2 \sqrt{2} find the value of  {a}^{2}  -  \dfrac{1}{ {a}^{2} }

To find:

 \star \:  {a}^{2}  -  \dfrac{1}{ {a}^{2} } = \:  ?

Answer:

The  \: value \:  of  \: \underline{ \: \underline{ \:  \sf \pink{ \bf{{a}^{2}  -  \frac{1}{ {a}^{2} }\: is\: 0} } \: }\: }

Given:

 \star \: a = 3 +2 \sqrt{2}

Step-by-step explanation:

 \: a = 3 +2 \sqrt{2}

\dfrac{1}{ a } =  \dfrac{1}{3 + 2 \sqrt{2} }

Now rationalising the denominator,

\rightsquigarrow \dfrac{1}{ a } =  \dfrac{3 - 2 \sqrt{2} }{(3 + 2 \sqrt{2})(3 - 2 \sqrt{2})  }

We know that,

 \boxed{ {a}^{2}  -  {b}^{2}  = (a - b)(a + b)}

\rightsquigarrow \dfrac{1}{ a } =  \dfrac{3 - 2 \sqrt{2} }{ {(3)}^{2}  - {(2 \sqrt{2}) }^{2}   }

\rightsquigarrow \dfrac{1}{ a } =  \dfrac{3 - 2 \sqrt{2} }{ 9  - 8   }

\rightsquigarrow \boxed{\dfrac{1}{ a } =  3 - 2 \sqrt{2} }

Method 1 :-

Now,

 \bigstar \:  \bf{a}^{2}  -  \dfrac{1}{ {a}^{2} }

 \implies {a}^{2}  -  \dfrac{1}{ {a}^{2} } = (a  -  \frac{1}{a}) (a +  \frac{1}{a} )

Now substituting the values,  a \: and \: \frac{1}{a}

 =  \big( \bold{3 + 2 \sqrt{2}  -  3  - 2 \sqrt{2}} \:   \big) \big(3  \bold{+ 2  \sqrt{2}}   +  3  \bold{- 2 \sqrt{2}} \:   \big)

 = (0)(6)

 =   \boxed{\bf{0}}

 \longmapsto \boxed{ {a}^{2}  -  \dfrac{1}{ {a}^{2} }  = 0}

 \therefore The value of \underline{ \: \bf{{a}^{2}  -  \frac{1}{ {a}^{2} }\: is\: 0}\:}

____________________________________

Method 2 :-

 \bigstar \:  \bf{a}^{2}  -  \dfrac{1}{ {a}^{2} }

 ={(a)}^{2}  - {\big( \dfrac{1}{a}\big)}^{2}

= {(3+2 \sqrt{2})}^{2}-{(3-2 \sqrt{2})}^{2}

It's of the form {(a+b)}^{2}\:and\:{(a-b)}^{2}

= ({3}^{2}+2 \times 3 \times 2 \sqrt{2}+8)-({3}^{2}-2 \times 3 \times 2 \sqrt{2}+8)

 =9+8 \sqrt{2}+8-9-8 \sqrt{2}+8

= \boxed{\bold{0}}

 \hookrightarrow \boxed{ {a}^{2}  -  \dfrac{1}{ {a}^{2} }  = 0}

 \therefore The value of \underline{ \: \bf{{a}^{2}  -  \frac{1}{ {a}^{2} }\: is\: 0}\:}

____________________________________

Formula used:

 \bigstar {a}^{2}  -  {b}^{2}  = (a - b)(a + b)

 \bigstar {a+b}^{2} ={a}^{2}+2ab+{b}^{2}

 \bigstar {a-b}^{2} ={a}^{2}-2ab+{b}^{2}

Similar questions