Math, asked by ananyabhawssr, 1 year ago

if a=3+2√2 find the value of a3+1/a3​

Answers

Answered by kunjappanmd
4

Answer:

(12 \sqrt{2 }  + 18) \div 3 + 2 \sqrt{2}

Step-by-step explanation:

   {a}^{3}  + 1 \div  {a}^{3}  =

3 + 2 \sqrt{2}  + 1 \div 3 + 2 \sqrt{2}

(12 \sqrt{2 }  + 18) \div 3 + 2 \sqrt{2}

Answered by jitumahi435
14

Given:

a = 3 + 2\sqrt{2}

To find, the value of a^{3} +\dfrac{1}{a^{3}} = ?

Solution:

\dfrac{1}{a} = \dfrac{1}{3 + 2\sqrt{2}}

Rationalising by denominator, we get

\dfrac{1}{a} = \dfrac{1}{3 + 2\sqrt{2}}\times \dfrac{3 - 2\sqrt{2}}{3 - 2\sqrt{2}}

\dfrac{1}{a} = \dfrac{3 - 2\sqrt{2}}{3^2 - (2\sqrt{2})^2}

\dfrac{1}{a} = \dfrac{3 - 2\sqrt{2}}{9-8}

\dfrac{1}{a} =  3 - 2\sqrt{2}

Using the algebraic identity:

(a+\dfrac{1}{a})^3=a^{3} +\dfrac{1}{a^{3}}+3(a) (\dfrac{1}{a})(a+\dfrac{1}{a})

a^{3} +\dfrac{1}{a^{3}}=(a+\dfrac{1}{a})^3-3(a+\dfrac{1}{a})

Put a = 3 + 2\sqrt{2} and \dfrac{1}{a} =  3 - 2\sqrt{2}, we get

a^{3} +\dfrac{1}{a^{3}}=(3 + 2\sqrt{2} +3 - 2\sqrt{2})^3-3(3 + 2\sqrt{2} +3 - 2\sqrt{2})

a^{3} +\dfrac{1}{a^{3}}=(6)^3-3(6)

a^{3} +\dfrac{1}{a^{3}} = 216 - 18

a^{3} +\dfrac{1}{a^{3}} = 198

a^{3} +\dfrac{1}{a^{3}} = 198

Thus, if a = 3 + 2\sqrt{2}, then a^{3} +\dfrac{1}{a^{3}} = 198.

Similar questions