If a=3+2√2 find the value of a3/a6+a4+a2+1
Answers
Answered by
26
Given :-
- a = 3 + 2√2 .
To Find :-
- a³/( a^6 + a⁴ + a² + 1 ) = ?
Solution :-
→ a = (3 + 2√2)
→ 1/a = 1/(3 + 2√2)
→ 1/a = 1/(3 + 2√2) * [ (3 - 2√2) / (3 - 2√2) ]
→ 1/a = (3 - 2√2) / [ (3² - (2√2)² ]
→ 1/a = (3 - 2√2) /( 9 - 8 )
→ 1/a = (3 - 2√2)
So,
→ a + 1/a = (3 + 2√2) + (3 - 2√2)
→ (a + 1/a) = 6 . ------------------------- Equation (1)
Cubing both Sides of Equation one we get,
→ (a + 1/a)³ = 6³
→ a³ + 1/a³ + 3 * a * 1/a *(a + 1/a) = 216
→ a³ + 1/a³ + 3 * 6 = 216
→ a³ + 1/a³ = 216 - 18
→ (a³ + 1/a³) = 198 -------------------- Equation (2).
_____________________________
Now,
→ a³/( a^6 + a⁴ + a² + 1 )
Taking a³ common From Denominator we get,
→ a³ /a³(a³ + a + 1/a + 1/a³)
→ 1/[(a+1/a) + (a³ + 1/a³) ]
Now, Putting Value of Equation (1) & (2), we get ,
→ 1/[6 + 198 ]
→ 1/204 (Ans).
Answered by
6
Refers to the attachments
Knowledge Enhancer
- (a+b)²= a²+b²+2ab
- (a-b)²=a²+b²-2ab
- (a+b)(a-b)=a²-b²
- (a+b)³=a³+b³+3ab(a+b)
Attachments:
Similar questions