If a = 3+2√2 then find the value of a^3+1/a^3
Answers
GIVEn
If a = 3+2√2 then find the value of a^3+1/a^3
SOLUTIOn
- a = 3 + 2√2
→ 1/a = 3 + 2√2
Rationalize its denominator
→ 1/a = 1/3 + 2√2 × 3 - 2√2/3 - 2√2
→ 1/a = 3 - 2√2 /(3)² - (2√2)²
→ 1/a = 3 - 2√2/9 - 8
→ 1/a = 3 - 2√2
Now, value of a + 1/a
→ a + 1/a
→ 3 + 2√2 + 3 - 2√2
→ 6
So, (a + 1/a) = 6
_____________________
→ (a + 1/a) = 6
cube both side
→ (a + 1/a)³ = 6³
→ a³ + 1/a³ + 3*a*1/a(a + 1/a) = 216
→ a³ + 1/a³ + 3*6 = 216
→ a³ + 1/a³ + 18 = 216
→ a³ + 1/a³ = 216 - 18
→ a³ + 1/a³ = 198
Therefore, the value of a³ + 1/a³ is 198
_____________________
Given:
- We have been given that a = 3+2√2.
To Find:
- We need to find the value of a³+1/a³.
Solution:
As it is given that a = 3+2√2, so let us try to find the value of a + 1/a.
=> 3 + 2√2 + 1/3+2√2
=> 3 + 2√2 + ( 3 - 2√2 ) / ( 9 - 8 )
=> 3 + 2√2 + 3 - 2√2
=> 3 + 3
=> 6_____(1)
Now, we need to find the value of a³+1/a³.
We have, 6³= (a + 1/a)³ [From equation 1]
=> a³ + 3 a² (1/a) + 3 a (1/a)² + 1/a³ = 216
=> a³ + 3a + 3/a + 1/a³
=> a³ + 1/a³ + 3 ( a + 1/a )
=> a³ + 1/a³ + 3 (6)
=> a³ + 1/a³ + 18
=> a³ + 1/a³ = 216 - 18
=> a³ + 1/a³ = 198
Therefore, the value of a³ + 1/a³ is 198.