Math, asked by choprasonia024, 10 months ago

if a =√3-√2/√3+√2
and b=√3+√2/√3-√2
find the value of a^2+b^3-5ab​

Answers

Answered by Anonymous
10

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

❚ ANsWeR ❚

✺ Given :

  • \longrightarrow a= \dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}
  • \longrightarrow b= \dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}

✺ To Find :

  • a³+b³-5ab =?

Explanation

(1)

\implies  ab=\dfrac{\cancel{(\sqrt{3}-\sqrt{2})}}{\cancel{(\sqrt{3}+\sqrt{2})}}\times\dfrac{\cancel{(\sqrt{3}+\sqrt{2})}}{\cancel{(\sqrt{3}-\sqrt{2})}}

\implies ab=1

(2)

\implies (a+b)=\dfrac{(\sqrt{3}-\sqrt{2})}{(\sqrt{3}+\sqrt{2})}+\dfrac{(\sqrt{3}+\sqrt{2})}{(\sqrt{3}-\sqrt{2})}

\implies (a+b)=\dfrac{(\sqrt{3}-\sqrt{2})^2+(\sqrt{3}+\sqrt{2})^2}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}

\implies(a+b)= \dfrac{2(\sqrt{3}^2+\sqrt{2}^2)}{\sqrt{3}^2-\sqrt{2}^2}

\implies(a+b)= \dfrac{2(3+2)}{3-2}

\implies (a+b)=\dfrac{10}{1}

\implies \boxed{(a+b)=10}

Now , .........

✏ a³+b³-5ab

✏ (a+b)(a²-ab+b²)-5ab

✏ (a+b)(a²+b²-ab)-5ab

✏ (a+b)[(a+b)²-2ab-ab]-5ab

✏ (a+b)[(a+b)²-3ab]-5ab

✏ (10)[(10)²-3×1]-5×1

✏ (10)[100-3]-5

✏ 10×97-5

✏ 970-5

965

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

✺ Therefore :

Answered by TheBrainlyGirL001
13

⠀⠀⠀⠀☛...Given...☚⠀⠀

  • a =   \dfrac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3}  +  \sqrt{2} }

  • b =   \dfrac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2} }

⠀⠀ ⠀☛...To find...☚⠀ ⠀

✰✰⠀The value if a³ + b³ - 5ab

⠀ ⠀ ☛...Solution...☚⠀⠀

⠀⠀⠀In case 1st...

  • a + b =   \dfrac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3}  +  \sqrt{2} } + \dfrac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2} }

  • a + b =   \dfrac{( \sqrt{3}   -  \sqrt{2}    )  ^{2} + ( \sqrt{3}  +  \sqrt{2} )^{2}   }{( \sqrt{3} +  \sqrt{2}){( \sqrt{3} -   \sqrt{2}  }   }

  • a + b = \dfrac{2( \sqrt{3}  ^{2} +  \sqrt{2} ^{2} ) ^{2}   }{ \sqrt{3} ^{2}  -  \sqrt{2}   ^{2} }

  • a + b =   \dfrac{2(3+2)}{3-2}

  • a + b = \dfrac{10}{1}

  • a + b = 10

⠀⠀⠀In case 2nd...

  • a × b =   \dfrac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3}  +  \sqrt{2} } \times \dfrac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2} }

  • a × b = 1

⠀⠀⠀⠀Hence...

We have to find the value of a³ + b³ - 5ab

Substuting values in the following equation...

⠀ ⠀⠀ ⠀⠀⠀⠀ ⠀

⠀⠀ ⠀⠀⠀a³ + b³ = ( a + b) ( a² - ab + b² )

  • ✂ ( a + b ) [( a + b )² - 2ab - ab ] - 5ab
  • ✂ ( a + b ) [( a + b )² - 3ab ] - 5ab
  • ✂ ( 10 ) [( 10 )² - 3( 1 ) ] - 5 (1)
  • ✂ 10 × ( 100 - 3 ) - 5
  • ✂ 10 × 97 - 5
  • ✂ 970 - 5
  • 965...

Therefore, the value of a³ + b³ - 5ab will be 965...

Similar questions