if a= √3+√2/√3-√2 and b=√3-√2/√3+√2 then find value of a2 +b2
Answers
Answered by
11
✳Hey dear user !!
✨Here is ur answer --
Given,,
a = √3+√2/√3-√2
On rationalizing ,,
= √3+√2 / √3-√2 * √3+√2 / √3+√2
= (√3+√2)^2 / (√3)^2-(√2)^2
= (√3)^2+(√2)^2+2*√3*√2/3-2
= 3+2+2√6 / 1
= 5+2√6
b = √3-√2 / √3+√2
On rationalizing,,
= √3-√2 / √3+√2 * √3-√2 / √3-√2
= (√3-√2)^2 / (√3)^2-(√2)^2
= (√3)^2+(√2)^2-2*√3*√2 / 3-1
= 3+2-2√6 / 1
= 5-2√6
Now, a^2 + b^2
= (5+2√6)^2 + (5-2√6)^2
=(5)^2+(2√6)^2+2*5*2√6+(5)^2+(2√6)^2-2*5*2√6
= 25+24+20√6+25+24-20√6
= 50+48
= 98....
So, a^2 + b^2 = 98.
Hope it helps u.....☺✌
✨Here is ur answer --
Given,,
a = √3+√2/√3-√2
On rationalizing ,,
= √3+√2 / √3-√2 * √3+√2 / √3+√2
= (√3+√2)^2 / (√3)^2-(√2)^2
= (√3)^2+(√2)^2+2*√3*√2/3-2
= 3+2+2√6 / 1
= 5+2√6
b = √3-√2 / √3+√2
On rationalizing,,
= √3-√2 / √3+√2 * √3-√2 / √3-√2
= (√3-√2)^2 / (√3)^2-(√2)^2
= (√3)^2+(√2)^2-2*√3*√2 / 3-1
= 3+2-2√6 / 1
= 5-2√6
Now, a^2 + b^2
= (5+2√6)^2 + (5-2√6)^2
=(5)^2+(2√6)^2+2*5*2√6+(5)^2+(2√6)^2-2*5*2√6
= 25+24+20√6+25+24-20√6
= 50+48
= 98....
So, a^2 + b^2 = 98.
Hope it helps u.....☺✌
sakshisingh01:
thankuu so muchh
Similar questions