Math, asked by nilvalalit, 7 months ago

if a=√3+√2/√3-√2 and b=√3-√2/√3+√2
then value of a+b is ​

Answers

Answered by MeghaMadhav
0

Answer:

a+b=10√6

Step-by-step explanation:

a=√3+√2/√3-√2

b=√3-√2/√3+√2

a+b=(√3+√2)²+(√3-√2)²/√3²-√2²

=3+2√6+2+3-2√6+2√6/3-2

10√6/1

∴the answer is 10√6

Hope this might help you....

Answered by TheWonderWall
1

Answer:

Given, a = 3 + 2 / 3 - 2

and

b = 3 - 2 / 3 + 2

so putting back the value, we get :

a + b \\  \\  =  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}  }  +  \frac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3} +  \sqrt{2}  }  \\  \\  =  \frac{( \sqrt{3} +  \sqrt{2}) ^{2}   + ( \sqrt{3}  -  \sqrt{2} ) ^{2}  }{( \sqrt{3} -  \sqrt{2} )( \sqrt{3}  +  \sqrt{2})  }  \\  \\  =  \frac{ (\sqrt{3})^{2}  + 2 \times  \sqrt{3  } \times  \sqrt{2}  + ( \sqrt{2}  ) ^{2} + ( \sqrt{3}    -  \sqrt{2}) ^{2}  }{( \sqrt{3}^{2} - ( \sqrt{2})^{2}    }  \\  \\  =   \frac{3 + 2 \sqrt{6}  + 2 + ( { \sqrt{3} })^{2} - 2 \times  \sqrt{3}   \times  \sqrt{2} + ( \sqrt{2} )^{2}   }{3 - 2}   \\  \\  =  \frac{5 + 2 \sqrt{6} + 3 - 2 \sqrt{6}  + 2 }{1}  \\  \\  =  \frac{5 + 3 + 2}{1}  \\  \\ ( + 2 \sqrt{6} \: and \:   - 2 \sqrt{6}  \: cancelled) \\  \\  =   \frac{10}{1}  \\  \\  = 10 \\  \\ formula \: used \\  \\ (a + b) ^{2} =  a ^{2}  + 2ab + b ^{2}  \\  \\ (a - b) ^{2} =  a ^{2} - 2 ab + b ^{2}  \\  \\ a ^{2}  - b ^{2} = ( a + b)(a - b)

a + b = 10 .

scroll to see it properly

hope it helps uH

Similar questions