if a=3^2*5^3*7, b=5^2*7^2*3,c=7^3*5 and HCF (a,b,c) = 5^n*7*3^m , then n= ________ , m=_______
I NEED IT BREIFLY
Answers
Answered by
0
Step-by-step explanation:
a = 3² × 5³ × 7
b = 5² × 7² × 3
c = 7³ × 5
Simplification of above term :
a = (3² × 5²) × 35
a = 15² × 35
b = (5×7)² × 3
b = 35² × 3
c = (7×5)×7²
c = 7² × 35
*(Since 35 is a common term we will seperate it out and include it in as one of our term in H. C. F for the next step)
After seperating : a = 15² = 225 , b = 105 , c = 49
Since the H. C. F of 225,105 and 49 is 1, 35 is the H. C. F of a, b and c.
H. C. F(a, b, c) = 5ⁿ × 7 × 3^m
Equation : 5ⁿ × 7 × 3^m = 35
: 5ⁿ × 3^m = 5¹ × 3^0
After equating powers, we get the values of 'n' and 'm' as 1 and 0 respectively.
Plz mark as brainliest
Similar questions