if a = √3 + √2 and b = √3 - √2 find value of a^3+b^3 (using identities aka (a+b)^3=a^3+b^3+3ab(a+b) (a-b)^3=a^3-b^3-3ab(a-b) )
Answers
Answered by
1
heyya buddy
here is your answer
if a = √3 + √2 and b = √3 - √2
then a+b=√3 + √2+√3 - √2=2√3...........(1)
then ab=(√3 + √2)(√3 - √2)
=(√3)^2 - (√2)^2
=3-2
=1.................................................(2)
now
(a+b)^3=a^3+b^3+3ab(a+b)
putting above values in this identity
(2√3)^3=a^3+b^3+3(1)(2√3)
=>24√3=a^3+b^3+6√3
=>a^3+b^3=24√3-6√3
=>a^3+b^3=18√3
hope this helps buddy
mark the brainliest and click the like button
Similar questions