Math, asked by omgitsthekiller, 8 months ago

if a = √3 + √2 and b = √3 - √2 find value of a^3+b^3 (using identities aka (a+b)^3=a^3+b^3+3ab(a+b) (a-b)^3=a^3-b^3-3ab(a-b) )

Answers

Answered by Zaynroy
1

heyya buddy

here is your answer

if a = √3 + √2 and b = √3 - √2

then a+b=√3 + √2+√3 - √2=2√3...........(1)

then ab=(√3 + √2)(√3 - √2)

            =(√3)^2 - (√2)^2

            =3-2

            =1.................................................(2)

now

(a+b)^3=a^3+b^3+3ab(a+b)

putting above values in this identity

(2√3)^3=a^3+b^3+3(1)(2√3)

=>24√3=a^3+b^3+6√3

=>a^3+b^3=24√3-6√3

=>a^3+b^3=18√3

hope this helps buddy

mark the brainliest and click the like button

                       

Similar questions