Math, asked by dalaldakshita10, 10 months ago

if A(-3,2),B(a,b) and C(-1,4) are the vertices of an isosceles triangle,show that a+b =1, if AB=AC

Answers

Answered by SarcasticL0ve
8

Given:-

  • A,B and C are the vertices of an isosceles triangle.

  • Coordinate of A is (-3,2)

  • Coordinate of B is (a,b)

  • Coordinate of C is (-1,4)

  • AB = AC

To find:-

Using distance formula:-

AB = \sf \sqrt{(x_1 - x_2 )^2 + (y_1 - y_2 )^2}

\:\implies\sf \sqrt{(-3 - a)^2 + (2 - b)^2}

\:\implies\sf \sqrt{9 + a^2 + 6a + 4 + b^2 - 4b}

 \\

BC = \sf \sqrt{(x_3 - x_2 )^2 + (y_3 - y_2 )^2}

\:\implies\sf \sqrt{(-1 - a)^2 + (4 - b)^2}

\:\implies\sf \sqrt{1 + a^2 + 2a + 16 + b^2 - 8b}

According to question:-

:\implies\sf Distance_{(AB)} = Distance_{(AC)}

\:\implies\sf \sqrt{9 + a^2 + 6a + 4 + b^2 - 4b} = \sqrt{1 + a^2 + 2a + 16 + b^2 - 8b}

:\implies\sf \sqrt{13 + a^2 + 6a + b^2 - 4b} = \sqrt{17 + a^2 + 2a + b^2 - 8b}

:\implies\sf 13 + \cancel{a^2} + 6a + \cancel{b^2} - 4b = 17 + \cancel{a^2} + 2a + \cancel{b^2} - 8b

:\implies\sf 13 + 6a - 4b = 17 + 2a - 8b

:\implies\sf 6a - 4b - 2a + 8b = 17 - 13

:\implies\sf 4a + 4b = 4

:\implies\sf \cancel{4}(a + b) = \cancel{4}

:\implies\sf {\underline{(a + b) = 1}}

★ Hence solved!!

\rule{200}3

Answered by InfiniteSoul
2

\sf{\huge{\bold{\pink{\bigstar{\boxed{\boxed{Question}}}}}}}

  • If A(-3,2),B(a,b) and C(-1,4) are the vertices of an isosceles triangle,show that a+b =1, if AB=AC

\sf{\huge{\bold{\pink{\bigstar{\boxed{\boxed{Solution}}}}}}}

\sf{\bold{\green{\underline{\underline{Given}}}}}

  • triangle ABC is an isosceles triangle
  • AB = AC
  • coordinate of A = -3 , 2
  • coordinate of B = a , b
  • coordinate of C = -1 , 4

\sf{\bold{\blue{\underline{\underline{To\:proof}}}}}

  • a + b = 1

\sf{\bold{\purple{\underline{\underline{ explanation }}}}}

  • Distance btw. AB

AB = \sf \sqrt{(x_1 - x_2 )^2 + (y_1 - y_2 )^2}

 AB = \sf \sqrt{(-3 - a)^2 + (2 - b)^2}

 AB = \sf \sqrt{9 + a^2 + 6a + 4 + b^2 - 4b}

\sf{\bold{\red{\boxed{AB = \sf \sqrt{9 + a^2 + 6a + 4 + b^2 - 4b} }}}}

  • Distance btw. BC

BC = \sf \sqrt{(x_3 - x_2 )^2 + (y_3 - y_2 )^2}

 BC = \sf \sqrt{(-1 - a)^2 + (4 - b)^2}

 BC = \sf \sqrt{1 + a^2 + 2a + 16 + b^2 - 8b}

\sf{\bold{\red{\boxed{   BC = \sf \sqrt{1 + a^2 + 2a + 16 + b^2 - 8b}}}}}

  • Compare

\sf Distance{(AB)} = Distance{(AC)}

\sf \sqrt{9 + a^2 + 6a + 4 + b^2 - 4b} = \sqrt{1 + a^2 + 2a + 16 + b^2 - 8b}

\sf \sqrt{13 + a^2 + 6a + b^2 - 4b} = \sqrt{17 + a^2 + 2a + b^2 - 8b}

\sf 13 + \cancel{a^2} + 6a + \cancel{b^2} - 4b = 17 + \cancel{a^2} + 2a + \cancel{b^2} - 8b

\sf 13 + 6a - 4b = 17 + 2a - 8b

\sf 6a - 4b - 2a + 8b = 17 - 13

\sf 4a + 4b = 4

\sf \cancel{4}(a + b) = \cancel{4}

\sf {{(a + b) = 1}}

\sf{\bold{\red{\boxed{a + b = 1  }}}}

............Hence Proved

________________❤

Similar questions