IF A=3+2 ROOT 2 THEN FIND A^3+1/A^3
Answers
Answered by
4
Answer:
198
Step-by-step explanation:
⇒ a = 3 + 2√2
⇒ 1/a = 1/( 3 + 2√2 )
Multiply as well as divide( RHS ) by 3 - 2√2;
⇒ 1/a = (3-2√2)/(3+2√2)(3-2√2)
⇒ 1/a = (3-2√2)/[ (3)^2-(2√2)^2]
⇒ 1/a = (3-2√2)/(9-8)
⇒ 1/a = ( 3 - 2√2 ) / 1
⇒ 1/a = 3 - 2√2
We know, a^3 + b^3 = ( a + b )^3 - 3ab( a + b )
Here,
⇒ a^3 + 1 /a^3
⇒ (a + 1/a)^3 - 3(a*1/a)(a+1/a)
⇒ (3+2√2+3-2√2)^3 - 3(1)(3+2√2+3-2√2)
⇒ (6)^3 - 3(1)(6)
⇒ 216 - 18
⇒ 198
Answered by
0
A= 3+2.
so,
(3+2)^3+1/(3+2)^3
(3+2)^4/(5)^3
5^4/5^3
625/125
5.
Answer = 5.
Please follow me and barainlist me
Also
Similar questions