Math, asked by shrmistha, 1 year ago

if a =√3-√2by√3+√2and b=√3+√2by√3-√2find the value of a^2+b^2-5ab

Answers

Answered by DaIncredible
3
Hey friend,
Here is the answer you were looking for:
a =  \frac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3} +  \sqrt{2}  }  \\

On rationalizing the denominator we get,

a =  \frac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3}  +  \sqrt{2} }  \times  \frac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2} }  \\

Using the identities:

 {(a - b)}^{2}  =  {a}^{2}  +  { b }^{2}  - 2ab \\ (a + b)(a - b) =  {a}^{2}  -  {b}^{2}

a =  \frac{ {( \sqrt{3}) }^{2} +  {( \sqrt{2} )}^{2} - 2( \sqrt{3})( \sqrt{2}   ) }{ {( \sqrt{3}) }^{2}  -  {( \sqrt{2} )}^{2} }  \\  \\ a =  \frac{3 + 2 - 2 \sqrt{6} }{3 - 2}  \\  \\ a = 5 - 2 \sqrt{6}

b =  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  -  \sqrt{2} }  \\

On rationalizing the denominator we get,

b =  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3} -  \sqrt{2}  }  \times  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} }  \\

Using the identities:

 {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab \\ (a + b)(a - b) =  {a}^{2}  -  {b}^{2}

b =  \frac{ {( \sqrt{3}) }^{2} +  {( \sqrt{2} )}^{2}   +2 ( \sqrt{3} )( \sqrt{2}) }{ {( \sqrt{3}) }^{2} -  {( \sqrt{2}) }^{2}  }  \\  \\ b =  \frac{3 + 2 + 2 \sqrt{6} }{3 - 2}  \\  \\ b = 5 + 2 \sqrt{6}

Now,

 {a}^{2}  +  {b}^{2}  - 5ab
Putting the values we get,

 {(5 - 2 \sqrt{6}) }^{2}  +  {(5 + 2 \sqrt{6} )}^{2}  - 5(5 - 2 \sqrt{6} )(5  + 2 \sqrt{6} )

Using same identities

( {(5)}^{2}  +  {(2 \sqrt{6} )}^{2}  - 2(5)(2 \sqrt{6} )) + ( {(5)}^{2}  +  {(2 \sqrt{6} )}^{2}  + 2(5)(2 \sqrt{6} )) - 5( {(5)}^{2}  -  {(2 \sqrt{6} )}^{2} ) \\  \\  = (25 + 24 - 20 \sqrt{6} ) + (25 + 24 + 20 \sqrt{6} ) + 5(25 - 24) \\  \\  = 49 - 20 \sqrt{6}  + 49 + 20 \sqrt{6}  - 5(1) \\  \\  = 98 - 5 \\  \\  = 93
Hope this helps!!

If you have any doubt regarding to my answer, feel free to ask in the comment section or inbox me if needed.

@Mahak24

Thanks...
☺☺
Similar questions