Math, asked by subaj1719, 1 year ago

If a=3-2square root 2.Then find a^2 -1/a^2

Answers

Answered by DaIncredible
2
Heya !!

a = 3 - 2 \sqrt{2}  \\   \\  \bf \: on \: squaring \: both \: the \: sides \: we \: get \\  \\  {(a)}^{2} =  {(3 - 2 \sqrt{2}) }^{2}   \\  \\  {a}^{2}  =  {(3)}^{2}  +  {(2 \sqrt{2} )}^{2}  - 2(3)(2 \sqrt{2} ) \\  \\  {a}^{2}  = 9 + 8 - 12 \sqrt{2}  \\  \\  {a}^{2}  = 17 - 12 \sqrt{2}
 \frac{1}{a}  =  \frac{1}{3 - 2 \sqrt{2} }  \\

On rationalizing the denominator we get,

 \frac{1}{a}  =  \frac{1}{3 - 2 \sqrt{2} }  \times  \frac{3 + 2 \sqrt{2} }{3 + 2 \sqrt{2} }  \\  \\  \frac{1}{a}  =  \frac{3 + 2 \sqrt{2} }{ {(3)}^{2} -  {(2 \sqrt{2}) }^{2}  }  \\  \\  \frac{1}{a}  =  \frac{3 + 2 \sqrt{2} }{9 - 8}  \\  \\  \frac{1}{a}  = 3 + 2 \sqrt{2}  \\

On squaring both the sides we get,

 {( \frac{1}{a}) }^{2}  =  {(3 + 2 \sqrt{2}) }^{2}  \\  \\  \frac{1}{  {a}^{2}   }  =  {(3)}^{2}  +  {(2 \sqrt{2}) }^{2}  + 2(3)(2 \sqrt{2} ) \\  \\  \frac{1}{ {a}^{2} }  = 9 + 8 + 12 \sqrt{2}  \\  \\  \frac{1}{ {a}^{2} }  = 17 + 12 \sqrt{2}  \\

Now putting the values we get,

 {a}^{2}  -  \frac{1}{ {a}^{2} }  = (17  -  12 \sqrt{2} ) - (17  +  12 \sqrt{2} ) \\  \\  {a}^{2}  -  \frac{1}{ {a}^{2} }  = 17 - 12 \sqrt{2}  - 17 - 12 \sqrt{2}  \\  \\  {a}^{2}  -  \frac{1}{ {a}^{2} }  =  - 24 \sqrt{2}

Hope this helps ☺
Similar questions