Math, asked by anushakota6537, 9 months ago

If a=3+√5÷2,then find the value of a^2+1÷a^2

Answers

Answered by Rohith200422
6

Question:

If  a= \dfrac{3+ \sqrt{5} }{2} ,then find the value of   {a}^{2} + \dfrac{1}{ {a}^{2} } .

To find:

 \bigstar To \: find \:  {a}^{2}  +  \dfrac{1}{ {a}^{2} }

Answer:

 The \: value \: is \:  \underline{ \:  \underline{ \: \bold{ \sf \pink{ {a}^{2}  -  \dfrac{1}{ {a}^{2} }   \: is \:   \dfrac{3 \sqrt{5} }{2} }} \: } \: }

Given:

a =  \dfrac{3 +  \sqrt{5} }{2}

Step-by-step explanation:

a =  \dfrac{3 +  \sqrt{5} }{2}

 \implies \dfrac{1}{a}  =  \dfrac{2}{3 +  \sqrt{5} }

Now rationalising the denominator,

 \implies \dfrac{1}{a}  =  \dfrac{2(3 -  \sqrt{5})}{(3   +    \sqrt{5})(3 -  \sqrt{5})  }

It's of the form, ( a² - b² ) = (a+b) (a-b)

 \implies   \dfrac{2(3 -  \sqrt{5})}{ {(3)}^{2} -  {( \sqrt{5}) }^{2}  }

 \implies   \dfrac{2(3 -  \sqrt{5})}{ 9 -  5}

 \implies   \dfrac{ \not{2}(3 -  \sqrt{5})}{ \not{ 4} _{2} }

 \implies \boxed{a =  \dfrac{3 +  \sqrt{5} }{2}}

 \implies  \boxed{ \dfrac{1}{a}  =  \frac{3 -  \sqrt{5}}{2} }

________________________________________________

Now finding the value,

 \bigstar  {a}^{2}  -  \dfrac{1}{ {a}^{2} }

\hookrightarrow  (a +  \dfrac{1}{a} )(a -  \dfrac{1}{a} )

\hookrightarrow  \big( \dfrac{3 +  \sqrt{5} }{2}  +  \dfrac{3 -  \sqrt{5} }{2} \big) \big( \dfrac{3 +  \sqrt{5} }{2}   -  \dfrac{3 -  \sqrt{5} }{2} \big)

\hookrightarrow  \big( \dfrac{3 \bold{ +  \sqrt{5}} + 3\bold{  -  \sqrt{5}} }{2} \big)\big( \dfrac{ \bold{3}   + \sqrt{5} \bold{  -  3}  +  \sqrt{5} }{2}\big)

\hookrightarrow  \big( \dfrac{6}{2}  \big) \big( \dfrac{ \sqrt{5} }{2}  \big)

\hookrightarrow  \boxed{ {a}^{2}  -  \dfrac{1}{ {a}^{2} }  =  \dfrac{3 \sqrt{5} }{2} }

\therefore The \: value \: is \:    \underline{ \: \bold{ {a}^{2}  -  \dfrac{1}{ {a}^{2} }   \: is \:   \dfrac{3 \sqrt{5} }{2} } \: }

Formula used:

 \bigstar  {a}^{2}  -  {b}^{2}  = (a + b)(a - b)

Similar questions