Math, asked by RAJDEEP2K7, 2 months ago

if a = 3+√5/2 then find the value of a^2+1/a^2​

Answers

Answered by rohangupta0424
1

Answer:

a^2+\frac{1}{a^2}=7

Refer \: \:  to  \: \:  steps  \:  \: for \: \:   attachment...

Attachments:
Answered by xSoyaibImtiazAhmedx
1

Given,

 \:  \:  \:  \:  \:  \:  \mathtt{a \:  = 3 +  \frac{ \sqrt{5} }{2} }

Now,

 \mathtt{ {a}^{2}  +  \frac{1}{ {a}^{2} } }

  \mathtt{ = (a +  \frac{1}{a} ) ^{2} } - 2

  \large = (3 +  \frac{ \sqrt{5} }{2}  +  \frac{1}{3 +  \frac{ \sqrt{5} }{2} } )^{2}  - 2

 \large =  (\frac{6 +  \sqrt{5} }{2}  +  \frac{1}{ \frac{6 +  \sqrt{5} }{2}} ) ^{2}  - 2

  =  (\frac{6 +  \sqrt{5} }{2}  +  \frac{2}{6 +  \sqrt{5} })^{2}  - 2

 = ( \frac{(6 +  \sqrt{5} )^{2}  - 4 }{2(6 +  \sqrt{5} )} )^{2}  - 2

 =  (\frac{41 + 12 \sqrt{5} }{12 + 2 \sqrt{5} } )^{2}  - 2

 =  \frac{984 \sqrt{5}  + 2401}{48 \sqrt{5}  + 164} - 2

 =  \large{ \boxed{ \mathtt{ \color{blue}{\bold{ 3 \sqrt{5}  +  \frac{33}{4} }}}}}

Similar questions