Math, asked by manaswi46, 9 months ago

if a= 3+√5/2, then find the value of a²+1/a²​

Answers

Answered by umiko28
32

Answer:

 \bf\ \: answer \implies \: 7

✏Question✒a= 3+√5/2, then find the value of a²+1/a²

✏to find✒a²+1/a²

✏solution✒

 \bf\ a =  \frac{3 +  \sqrt{5} }{2}  \\  \\  \bf\  \implies: \frac{1}{a}   =  \frac{2}{3 +  \sqrt{5} }  \\  \\ \bf\  \implies: \frac{1}{a} =   \frac{2(3 -  \sqrt{5)} }{(3 +  \sqrt{5} )(3 -  \sqrt{5} )}  \\  \\ \bf\  \implies: \frac{1}{a} =   \frac{6 - 2 \sqrt{5} }{ ({3})^{2}  -  {( \sqrt{5} )}^{2} }  \\  \\ \bf\  \implies: \frac{1}{a} =   \frac{6 - 2 \sqrt{5} }{9 - 5}  \\  \\ \bf\  \implies: \frac{1}{a} =   \frac{2(3 -  \sqrt{5)} }{4}  \\  \\ \bf\boxed{  \implies: \frac{1}{a} =   \frac{3 -  \sqrt{5} }{2} } \\  \\  \huge\bf{ now \leadsto: } \\  \\  \bf\ \implies:   {a}^{2} +  \frac{1}{  {a}^{2} }   \\  \\ \bf\ \implies:  { (\frac{3 +  \sqrt{5} }{2}) }^{2}  +  { (\frac{3 -  \sqrt{5} }{2} )}^{2}  \\  \\ \bf\ \implies: \frac{ {(3 -  \sqrt{5} )^{2} + (3 +  \sqrt{5)} }^{2} }{ {2}^{2} }  \\  \\  \bf\  \implies:  \frac{9 -  \cancel{6 \sqrt{5}  }+ 5 + 9 +  \cancel{6 \sqrt{5}} + 5 }{4}  \\  \\  \bf\  \implies:  \frac{28}{4}  \\  \\  \bf\boxed{  \implies:7 \:  \:  \bigstar }

Answered by BrainlyVirat
62

Answer: 7

Step by step explanation:

Given: a = 3 + √5 / 2

Therefore,

1 / a = 2 / 3 + √5

= 2 × ( 3 - √5 ) / ( 3 + √5 ) × ( 3 - √5 )

= 2 × ( 3 - √5 ) / ( 3 )² - ( √5 )²

= 3 - √5 / 2a + 1 /a

= 3 + √5 /2 + 3 - √5 /2

= 6 / 2

a + 1/a = 3

Using identity: (a + b)² = a² + 2ab + b²

(a + 1 /a)² = a² + 1/a² + 2 (a) × (1/a)

=> (a + 1 /a)² - 2 (a) × (1/a) = a² + 1/a²

=> (3)² - 2 = a² + 1/a

=> (3)² - 2 = a² + 1/a²

=> (9) - 2 = a² + 1/a²

7 = a² + 1 /a²

Thus, answer to your question is 7.

Similar questions