Math, asked by riyatyagi976, 1 year ago

if a=3+√5/2 then find the value of a2 + 1/a2 I need full explanation

Answers

Answered by sakshi7860
12

A = 3+✓5/2 

Therefore,

a²+1/a² = (3+✓5)²+1/(3+✓5)² 

= 9+5/4+1/9+5/4

= 14+4/4/9+5/4

= 18/14

= 9/7


riyatyagi976: a=3+√5/2 then (a)square should be equal to (3+√5/2) square and not only (3+√5) where is the 2 that divides it
sakshi7860: nt shown but square of 2 i mean 4 is written directly... see
riyatyagi976: ok thanks
Answered by aquialaska
13

Answer:

Value of a^2+\frac{1}{a^2}\:\:is\:\:\frac{133+45\sqrt{5}}{34}

Step-by-step explanation:

Given value of a=\frac{3+\sqrt{5}}{2}

We need to find value of a^2+\frac{1}{a^2}

First we find ,

a^2=(\frac{3+\sqrt{5}}{2})^2=\frac{(3+\sqrt{5})^2}{4}=\frac{3^2+(\sqrt{5})^2+2\times3\times\sqrt{5}}{4}=\frac{9+5+6\sqrt{5}}{4}=\frac{14+6\sqrt{5}}{4}=\frac{7+3\sqrt{5}}{2}

Now, \frac{1}{a^2}=\frac{2}{7+3\sqrt{5}}=\frac{2}{7+3\sqrt{5}}\times\frac{7-3\sqrt{5}}{7-3\sqrt{5}}=\frac{2(7-3\sqrt{5})}{(7+3\sqrt{5})(7-3\sqrt{5})}

=\frac{2(7-3\sqrt{5})}{49-3\times5}=\frac{2(7-3\sqrt{5})}{34}=\frac{7-3\sqrt{5}}{17}

Fionally,

a^2+\frac{1}{a^2}=\frac{7+3\sqrt{5}}{2}+\frac{7-3\sqrt{5}}{17}=\frac{17(7+3\sqrt{5})+2(7-3\sqrt{5})}{34}=\frac{119+51\sqrt{5}+14-6\sqrt{5}}{34}=\frac{133+45\sqrt{5}}{34}

Therefore, Value of a^2+\frac{1}{a^2}\:\:is\:\:\frac{133+45\sqrt{5}}{34}

Similar questions