Math, asked by aastha4866, 1 year ago

If à=3-√5\3+√5 and b=3+√5/3-√5, fond a^2-b^2

Answers

Answered by Anonymous
12

Solution :-

 a = \dfrac{3-\sqrt{5}}{3 + \sqrt{5}}

 b = \dfrac{3+\sqrt{5}}{3 - \sqrt{5}}

Now we will rationalise the denominators of a and b

For a

 a = \dfrac{3-\sqrt{5}}{3 + \sqrt{5}} \times \dfrac{3-\sqrt{5}}{3 - \sqrt{5}}

 a=  \dfrac{(3-\sqrt{5})^2}{3^2 - \sqrt{5}^2}

 a = \dfrac{9-6\sqrt{5} + 5}{9  -5}

 a = \dfrac{14 - 6\sqrt{5}}{4}

 a = \dfrac{7 - 3\sqrt{5}}{2}

For b

 b = \dfrac{3+\sqrt{5}}{3 - \sqrt{5}} \times \dfrac{3+\sqrt{5}}{3 + \sqrt{5}}

 b=  \dfrac{(3+\sqrt{5})^2}{3^2 - \sqrt{5}^2}

 b = \dfrac{9+6\sqrt{5} + 5}{9  -5}

 b = \dfrac{14 +6\sqrt{5}}{4}

 b = \dfrac{7 + 3\sqrt{5}}{2}

Now we have

 a = \dfrac{7 - 3\sqrt{5}}{2}

and

 b = \dfrac{7 + 3\sqrt{5}}{2}

Now

For a²

 a^2 =\left( \dfrac{7 - 3\sqrt{5}}{2}\right)^2

 a^2 = \dfrac{49 - 42\sqrt{5} + 45}{4}

 a^2 = \dfrac{94 - 42\sqrt{5}}{4}

For b²

 b^2 =\left( \dfrac{7 + 3\sqrt{5}}{2}\right)^2

 b^2 = \dfrac{49 + 42\sqrt{5} + 45}{4}

 b^2 = \dfrac{94 + 42\sqrt{5}}{4}

Now a² - b²

 = \dfrac{94 - 42\sqrt{5}}{4} - \dfrac{94 + 42\sqrt{5}}{4}

 = \dfrac{(94 -94)  - 42\sqrt{5}- 42\sqrt{5}}{4}

 = \dfrac{ -84\sqrt{5}}{4}

 = -21\sqrt{5}

Similar questions