If A={3,6,9,12,15,18,21};B={4,8,12,16,20};C={2,4,6,8,10,12,14,16}D={5,10,15,20}find A-B;A-C,C-B,B-D.
Answers
ii) A-C ={3,9,15,18,21}
iii) A- D = {3,6,9,12,18,21}
iv) B-A = {4,8,16,20}
v) C- A = {2,4,8,10,14,16}
vi) D- A = {3,6,9,12,18,21}
vii) B- C = {20}
viii) B - D = {4,8,12,16}
ix) C- B = {2,6,10,14}
x) D - B = {4,8,12,16}
Example 13 - BL and CM are medians of a triangle ABC - Examples
BL and CM are medians on sides AC and AB of triangle ABC, right ...
Concept-
This question is based on sets . The concept of sets is very simple. It is a suffix as the basis on which all abstract notions in mathematics can be built. A set is determined by its elements . If A is a set , we write x∈ A to say that x is an element of A.
Given-
Elements present in sets A, B, C AND D are as follows:
A = { 3, 6 , 9 , 12 , 15 , 18 , 21 }
B= { 4 , 8 , 12 , 16 , 20 }
C= { 2 , 4 , 6 , 8 , 10 , 12 , 14 , 16 }
D= { 5 , 10 , 15 , 20 }
Find-
We have to find A-B, A-C , C-B , B-D.
Solution-
(i) A-B
A-B = A - (A∩B)
A∩B = { 3 , 6 , 9 , 12 , 15 , 18 21 } ∩ { 4 , 8 , 12 , 16 , 20 }
A∩B = { 12}
A-B = A- (A∩B)
A-B = { 3, 6 ,9 , 12 , 15 , 18 , 21 } - {12 }
A-B = {3 , 6 , 9 , 15 , 18 , 21 }
Hence, A-B = {3 , 6 , 9 , 15 , 18 , 21 }
(ii) A-C
A-C = A - (A∩C)
A∩C = { 3, 6 , 9 , 12 , 15 , 18 , 21 } ∩ { 2 , 4 , 6 , 8 , 10 , 12 , 14 , 16 }
A∩C = {6 , 12}
A-C = A - (A∩C)
A-C= { 3, 6 , 9 , 12 , 15 , 18 , 21 } - { 6 , 12}
A-C = {3 , 9 , 15 , 18 , 21}
Hence, A-C = {3 , 9 , 15 , 18 , 21}
(iii) C-B
C-B = C - (C∩B)
C∩B = { 2 , 4 , 6 , 8 , 10 , 12 , 14 , 16 } ∩ { 4 , 8 , 12 , 16 , 20 }
C∩B = {4 , 8 , 12 , 16}
C-B = C - (C∩B)
C-B = { 2 , 4 , 6 , 8 , 10 , 12 , 14 , 16 } - {4 , 8 , 12 , 16}
C-B = {2 , 6 , 10 , 14}
Hence, C-B = {2 , 6 , 10 , 14}
(iv) B-D
B-D = B- (B∩D)
B∩D = { 4 , 8 , 12 , 16 , 20 } ∩ { 5 , 10 , 15 , 20 }
B∩D = {20}
B-D = B- (B∩D)
B-D = { 4 , 8 , 12 , 16 , 20 } - {20}
B-D = { 4, 8 , 12 , 16 }
Hence, B-D = { 4, 8 , 12 , 16 }
#SPJ3