If a = (3+√7)/2 , then find the value of a² + 1/a²
Answers
Answered by
17
• According to given question :
Answered by
31
GIVEN:
- a = (3 + √7)/2
TO FIND:
- a² + ( 1/a² )
SOLUTION:
Substituting the value of a
→ [( 3 + √7 )/2]² + { 1/[( 3 + √7 )/2]²
→ ( 3 + √7 )²/4 + { 1/( 3 + √7 )²/4
Simplifying using
(a + b)² = a² + 2ab + b²
→ [3² + 2(3)(√7) + (√7)²/4] + [ 4/3² + 2(3)(√7) + (√7)²]
→ (9 + 6√7 + 7/4) + (4/9 + 6√7 + 7)
→ ( 16 + 6√7/4 ) + ( 4/16 + 6√7 )
Simplifying using Butterfly method
Butterfly method: a/b + c/d = (ad + bc)/bd
→ (16 + 6√7)² + 4²/4(16 + 6√7)
Simplifying using
(a + b)² = a² + 2ab + b²
→ 16² + 2(16)(6√7) + (6√7)² + 4²/64 + 24√7
→ 524 + 19√7/64 + 24√7
→ 4(131 + 48√7)/8(8 + 3√7)
→ 131 + 48√7/2(8 + 3√7)
Rationalizing the denominator
→ [131 + 48√7/2(8 + 3√7)] × [8 - 3√7/8 - 3√7 ]
→ 131 + 48√7(8 - 3√7)/2[8² + (3√7)²]
Simplifying
→ 1048 - 393√7 + 384√7 - 1008/2(64 - 63)
→ 40 - 9√7/2(1)
→ 40 - 9√7/2
Hence , a² + 1/a² = 40 - 9√7/2
Similar questions