Math, asked by bharatupadhaya18, 2 months ago

If A = (3,9,27,81), then write A in the set builder form.

Answers

Answered by Anonymous
4

Answer:

A = { x : x =3ⁿ, n ∈ N,  1 ≤ n ≤ 4 }

Answered by Anonymous
0

\underline{\underline{\Huge{\textbf{Question:}}}}

\mathsf{For\: what\: value\: of\: `K`\: the\: matrix}\\\mathsf{\left|\begin{array}{cc}k&2\\3&4\end{array}\right|\; has\: no\: Inverse}

\\

\underline{\Huge{\textbf{Concept Behind:}}}

\bullet\: \sf\textsf{Only Non-singular matrix can have inverse}

\bullet\: \sf\textsf{If there exists no inverse for a matrix, then}\\\sf\textsf{it is called \textbf{Singular Matrix or Non Invertible Matrix}}

\sf\textsf{Consider general form of a 2$\times$2 Matrix}

\mathsf{Say\: A = \left[\begin{array}{cc}a&b\\c&d\end{array}\right]}

\sf\textsf{Inverse of the Matrix A is given by,}

\qquad \LARGE{\boxed{\bigstar \; \; \mathbf{A^{-1} = \dfrac{1}{|A|}\: \left[\begin{array}{cc}d&-b\\-c&a\end{array}\right]}}}

\sf\textsf{Where,}

\qquad \LARGE{\boxed{\bigstar \; \; \mathbf{|A| =} \textbf{(ad-bc)}}} ———[1]

\maltese\: \sf\textsf{If the determinant of A (det A) is equal to zero,}\\\sf\textsf{then the Result tends to infinity and}\\\sf\textsf{the Matrix Inversion cannot be possible}

\therefore \sf\textsf{The matrix inversion can only be possible if}\\\sf\textbf{the determinant of the matrix is not zero}

\\

\underline{\underline{\Huge{\textbf{Solution:}}}}

\underline{\LARGE{\textbf{Step-1:}}}

\sf\textsf{Find the Determinant of Given Matrix}

Let the Given Matrix be A.

\implies \mathsf{A = \left|\begin{array}{cc}k&2\\3&4\end{array}\right|}

\sf\textsf{Comparing it with general form of 2x2 Matrix}\\\sf\textsf{We get,}\\\quad\\\textbf{a= k; b = 2; c = 3; d = 4}

\sf\textsf{On Substituting in [1]}

\implies \mathsf{|A| = 4(k) - 2(3)}

\implies \mathsf{|A| = 4(k) - 6}

\\

\underline{\LARGE{\textbf{Step-2:}}}

\sf\textsf{Equate the result of determinant to zero}\\\sf\textsf{to obtain value of k}

\implies \mathsf{|A| = 0}

\implies \mathsf{4(k) - 6 = 0}

\implies \mathsf{4(k) = 6}

\implies \mathsf{2k = 3}

\implies \mathsf{k = \dfrac{3}{2}}

\\

\therefore

\blacksquare\; \, \mathsf{The value\: of\: `K`\: for which the\: matrix}\\\mathsf{\left|\begin{array}{cc}k&2\\3&4\end{array}\right|\; has\: no\: Inverse} = \Large{\mathbf{\dfrac{3}{2}}}

Similar questions