Math, asked by srimans8e20192020, 9 months ago

If a=3 and b=-2 find the values of: 1)a^a+b^b 2)a^b+b^a answer:1) 27 1/4 2) -7 8/9

Answers

Answered by Rose08
5

Explanation :-

Given :

  • a = 3
  • b = -2

To find :

  • a^a + b^b

Solution :

Putting the values of a & b, we get -

= 3³ + 2-²

= 27 + 1/2²

= 27 + 1/4

= (108 + 1) / 4

= 109/4

= 27 ¼

Hence, the value of a^a + b^b is 27 ¼.

In the next case,

Given :

  • a = 3
  • b = -2

To find :

  • a^b + b^a

Solution :

Putting the value of a & b, we get -

= 3-² + (-2)³

= 1/3² + (-8)

= 1/9 + (-8)

= 1/9 - 8

= (1 - 72) / 9

= -71/9

= -7 8/9

Hence, the value of a^b + b^a is -7 8/9..

Answered by FazeelKarkhi
1

 \huge \underline{ \purple{ \boxed{ \bf \orange{Answer:-}}}}

\blue{\bold{\underline{\underline{Given:-}}}}

  • a = 3

  • b = –2

\blue{\bold{\underline{\underline{To \: Find:-}}}}

 = {a}^{a}+{b}^{b}

 = {a}^{b}+{b}^{a}

 \small \underline{ \blue{ \boxed{ \bf \green{In \: (1):-}}}}

 =  {3}^{3}  +  { - 2}^{ - 2}

 = 27 +  (\frac{1}{2} )^{2}

 = 27 +  \frac{1}{4}

 =  \frac{109}{4}

 = 27 \frac{1}{4}

 \small \underline{ \blue{ \boxed{ \bf \green{In \: (2):-}}}}

 =  {3}^{ - 2}  +  ({ - 2}) ^{3}

 =  \frac{1}{ {3}^{2} }  - 8

 =  \frac{1}{9}  - 8

 =  \frac{1 - 72}{9}

 =   \frac{ - 71}{9}

 =   - 7  \frac{8}{9}

\bf\blue{Hope\ it\ helps.}

\bf\pink{Plz\ Mark\ As\ Brainliest.}

Similar questions