If A=π\3 and B=π/6 then prove that Tan (A-B) = TanA-TanB/1-TanATanB
Answers
Answered by
4
Step-by-step explanation:
tan (A+B) = [tan A + tan B]/[1 - tan A tan B]
RHS = [tan A + tan B]/[1 - tan A tan B]
=[(sin A/cos A) + (sin B/cos B)]/[1-(sin A/cos A)(sin B/cos B)
= [sin A cos B + cos A sin B]/[cos A cos B][1 - sin A sin B/(cos A cos B)]
= sin (A+B)/{[cos A cos B][cos A cos B - sin A sin B]/(cos A cos B)}
= sin (A+B)/[cos A cos B - sin A sin B
= sin (A+B)/cos (A+B)
= tan (A+B) = LHS.
Similar questions