If a^3+b^3=224 and a+b=8 find ab
Answers
Answered by
0
(a+b)^3=a^3+b^3+3ab(a+b)
(8)^3=224+3ab(8)
512=224+24ab
228=24ab
ab=228/24
ab=9.5
abhi178:
correct it
Answered by
4
Given , a³ + b³ = 224 and a + b = 8
we know, (a + b)³ = a³ + b³ + 3ab(a + b)
put here a³ + b³ = 224 and a + b = 8
so, (8)³ = 224 + 3ab(8)
8 × 8 × 8 = 224 + 24ab
512 - 224 = 24ab
288 = 24ab
ab = 288/24 = 14
hence, ab = 14
we know, (a + b)³ = a³ + b³ + 3ab(a + b)
put here a³ + b³ = 224 and a + b = 8
so, (8)³ = 224 + 3ab(8)
8 × 8 × 8 = 224 + 24ab
512 - 224 = 24ab
288 = 24ab
ab = 288/24 = 14
hence, ab = 14
Similar questions