If a^3 - b^3 = 3(a^2)b + 5ab^2, then show that log ((a-b)/2) = 1/3 (log(a) + 2log(b))
Attachments:
Answers
Answered by
0
Answer:
Mark brainlist
Step-by-step explanation:
(a+b)^2- 2ab=7ab
=>(a+b)^2=9ab
taking square root
=>(a+b)=3(ab)^1/2
taking log
log(a+b)=l0g3+ 1/2(log(ab))
=>l0g(a+b)-log3=1/2[log a+ log b]
=>log[1/3(a+b)]=1/2[log a+ log b]
Hence proved
Similar questions