Math, asked by palanib144, 10 months ago


If a ^3+ b^3 = 344 and ab=7 then
what the value of a-b?​

Answers

Answered by BrainlyCindrealla
0

HEY DEAR

a^3 + b^3 = (a+b)^3- 3ab (a+b)

344= (a+b)^3 - 3×7 (a+b)

344= a^3+ b^3 + 3ab (a+b) - 21(a+b)

344=a^3+b^3 +3 ×7 (a+b) - 21(a+b)

344= a^3+ b^3 + 7a+b-3)

now,

a^3+b^3+7a+b -3 =344

a^3+b^3+a+b = 344+3 / 7

a^3+b^3+ a+b= 347/7

344+a+b = 347/ 7

a+b = 347- 344 /7

a+b = 3

HOPE ITS HELPFULL

#Cindrella#

Similar questions