Math, asked by Ashishsharanag2577, 1 year ago

If a^3+b^3+c^3=3abc and a+b+cis not equal to 0 also a-2=0 then

Answers

Answered by Jiyakhera
0
hey mate !!❤✌
here's ur answer ✍✍✍

if a+b+c =0
then
  \bold{{a}^{3}  +  {b}^{3}  +  {c}^{3}   = 3abc}
because..
 \bold{{a}^{3}   \times {b}^{3}  \times  {c}^{3}  - 3abc} \\  \bold{ =(a + b + c)( {a}^{2} +  {b}^{2}   +  {c}^{2}  - ab - bc - ca)}
 \bold{now \: if \: a + b + c = 0 ......\: so \:  {a}^{3 +  {b}^{3} + {c}^{3} - 3abc}   \: bold{will \: also \: be \: 0 } }

 \bold{so ....\:  {a}^{3}  {b}^{3}  {c}^{3}  - 3abc} \:  = 0

{{a}^{3} \times  {b}^{3}   \times {c}^{3} = 3abc}


⭐ Hope it helps ⭐
✔ Mark as brainliest ✔
⚛ Follow me ⚛
Similar questions